Compressive Adaptive Bilateral Filtering

Pravin Nair, Ruturaj G. Gavaskar and Kunal N. Chaudhury

Department of Electrical Engineering, Indian Institute of Science

pravinn@iisc.ac.in

IEEE International Conference on Acoustics, Speech and Signal Processing (2020)

Classical bilateral filter

Nonlinear edge-preserving smoothing¹:

$$\begin{split} \boldsymbol{g}(\boldsymbol{x}) &= \eta(\boldsymbol{x})^{-1} \sum_{\boldsymbol{y} \in W_{\boldsymbol{x}}} \omega(\boldsymbol{x} - \boldsymbol{y}) \kappa_{\theta} \big(\boldsymbol{f}(\boldsymbol{x}), \boldsymbol{f}(\boldsymbol{y}) \big) \boldsymbol{f}(\boldsymbol{y}), \\ \eta(\boldsymbol{x}) &= \sum_{\boldsymbol{y} \in W_{\boldsymbol{x}}} \omega(\boldsymbol{x} - \boldsymbol{y}) \kappa_{\theta} \big(\boldsymbol{f}(\boldsymbol{x}), \boldsymbol{f}(\boldsymbol{y}) \big), \end{split}$$

where

f and **g** are the input and output RGB images.

•
$$f(x)$$
 and $g(x)$ are vectors.

- ω and κ_{θ} = Gaussian kernels with variance ρ^2 and θ^2 .
- W_x = Neighbourhood around pixel x for averaging.

¹Tomasi and Manduchi, 1998.

Role of θ

Input.

Output, $\theta = 200$.

Weights

Adaptation of θ

- θ (width of range kernel) controls the extent of blurring.
- A fixed θ might over- or under-smooth different regions.
- Hence, we allow θ to change at each pixel (a rule is required).
- Useful for controlling the blur in different regions, e.g., more blur to remove coarse textures in images.
- Proposed earlier for a couple of applications:
 - Image sharpening².
 - ► JPEG deblocking³.

²Zhang and Allebach, 2008. ³Zhang and Gunturk, 2009.

Adaptive bilateral filter (ABF)

► Make the width of the range kernel a function of *x*.

$$g(\mathbf{x}) = \eta(\mathbf{x})^{-1} \sum_{\mathbf{y} \in W_{\mathbf{x}}} \omega(\mathbf{x} - \mathbf{y}) \kappa_{\theta(\mathbf{x})} (f(\mathbf{x}), f(\mathbf{y})) f(\mathbf{y}),$$
$$\eta(\mathbf{x}) = \sum_{\mathbf{y} \in W_{\mathbf{x}}} \omega(\mathbf{x} - \mathbf{y}) \kappa_{\theta(\mathbf{x})} (f(\mathbf{x}), f(\mathbf{y})).$$

- However, a fixed spatial kernel is used.
- Generalization of the classical bilateral filter.

- $O(\rho^2)$ computations per pixel.
- Higher ρ (window size) is used for higher-resolution images.
- e.g. 60 seconds for a 2 megapixel image on a CPU.
- Real-time implementation is challenging.
- Fast approximation: Approximate the original formula and hope to speed it up, without appreciable loss of visual information.

Fast algorithms for bilateral filtering

- Several fast algorithms for classical bilateral filtering (gray/color).
- ► Complexity does not scale with filter width (O(1) implementation).
- Almost all fundamentally require range kernel to be fixed.
- Only one existing fast algorithm (gray and color each) for ABF.
- Accuracy of fast color ABF algorithm⁴ is not very high.

⁴Gavaskar and Chaudhury, ICIP 2019.

Our contribution

- Novel fast $\mathcal{O}(1)$ algorithm for ABF of gray and color images.
- Builds on a recently proposed fast algorithm for classical bilateral filtering⁵.
- Competitive with existing fast ABF algorithms.
- Main idea:
 - Express ABF in terms of SVD of a kernel matrix K.
 - Replace K by its low-rank approximation using Nyström method.
 - ► Express the resulting ABF approximation in terms of a few O(1) convolutions.

⁵Nair and Chaudhury, 2019.

Kernel matrix

Let

• m = No. of pixels.

• $(\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_m) = \text{Pixelwise RGB/intensity values in } \mathbf{f}$.

•
$$\{\theta_1, \theta_2, ..., \theta_L\}$$
 = Set of unique values taken by θ ($L \le m$).

► For
$$\ell = 1, ..., L$$
, define $K_{\ell} \in \mathbb{R}^{m \times m}$ by
 $K_{\ell}(i, j) = \kappa_{\theta_{\ell}}(\mathbf{p}_i, \mathbf{p}_j), \quad i, j = 1, ..., m.$

• Define the kernel matrix K by stacking K_1, \ldots, K_L :

$$\mathsf{K} = \begin{bmatrix} [\mathsf{K}_1]_{m \times m} \\ [\mathsf{K}_2]_{m \times m} \\ \vdots \\ [\mathsf{K}_L]_{m \times m} \end{bmatrix} \in \mathbb{R}^{mL \times m}.$$

ABF in terms of kernel matrix

- ► To compute g(x), we need $\kappa_{\theta(x)}(f(x), f(y))$ for $y \in W_x$.
- ▶ By construction, for $\ell = 1, ..., L$ and i, j = 1, ..., m,

$$\mathsf{K}(m(\ell-1)+i,j)=\kappa_{\theta_{\ell}}(\boldsymbol{p}_{i},\boldsymbol{p}_{j}).$$

► Hence, if $f(\mathbf{x}) = \mathbf{p}_i$ and $\theta(\mathbf{x}) = \theta_\ell$, define $\mathbf{r}(\mathbf{x}) = m(\ell - 1) + i$ and $\mathbf{c}(\mathbf{x}) = i$.

Then,

$$\boldsymbol{g}(\boldsymbol{x}) = \frac{\sum_{\boldsymbol{y} \in W_{\boldsymbol{x}}} \omega(\boldsymbol{x} - \boldsymbol{y}) \mathsf{K}(\mathbf{r}(\boldsymbol{x}), \mathbf{c}(\boldsymbol{y})) \boldsymbol{f}(\boldsymbol{y})}{\sum_{\boldsymbol{y} \in W_{\boldsymbol{x}}} \omega(\boldsymbol{x} - \boldsymbol{y}) \mathsf{K}(\mathbf{r}(\boldsymbol{x}), \mathbf{c}(\boldsymbol{y}))}.$$

ABF using Gaussian convolutions

► Let
$$\mathsf{K} = \sum_{k=1}^{m} \sigma_k \boldsymbol{u}_k \boldsymbol{v}_k^{\top}$$
 (SVD). Then,
$$\boldsymbol{g}(\boldsymbol{x}) = \frac{\sum_{\boldsymbol{y} \in W_{\boldsymbol{x}}} \omega(\boldsymbol{x} - \boldsymbol{y}) \left\{ \sum_{k=1}^{m} \sigma_k \boldsymbol{u}_k(\mathbf{r}(\boldsymbol{x})) \boldsymbol{v}_k(\mathbf{c}(\boldsymbol{y})) \right\} \boldsymbol{f}(\boldsymbol{y})}{\sum_{\boldsymbol{y} \in W_{\boldsymbol{x}}} \omega(\boldsymbol{x} - \boldsymbol{y}) \left\{ \sum_{k=1}^{m} \sigma_k \boldsymbol{u}_k(\mathbf{r}(\boldsymbol{x})) \boldsymbol{v}_k(\mathbf{c}(\boldsymbol{y})) \right\}}.$$

Switching the summations,

$$\boldsymbol{g}(\boldsymbol{x}) = \frac{\sum_{k=1}^{m} \sigma_k \boldsymbol{u}_k(\mathbf{r}(\boldsymbol{x}))(\omega * \boldsymbol{h}_k)(\boldsymbol{x})}{\sum_{k=1}^{m} \sigma_k \boldsymbol{u}_k(\mathbf{r}(\boldsymbol{x}))(\omega * \boldsymbol{d}_k)(\boldsymbol{x})},$$

where

$$\bullet \ d_k(\mathbf{x}) = \mathbf{v}_k(\mathbf{c}(\mathbf{x})), \ \mathbf{h}_k(\mathbf{x}) = d_k(\mathbf{x})\mathbf{f}(\mathbf{x}).$$

• $\omega * \mathbf{f} = \text{Convolution of } \omega$ with an image \mathbf{f} .

• Gaussian convolutions can be implemented with $\mathcal{O}(1) \operatorname{cost}^6$.

⁶Deriche, 1993.

Why SVD?

- Empirically, the singular values of K decay rapidly.
- Hence, we may keep just the top few components, say $m_0 \ll m$.
- Will reduce the no. of convolutions from m to m_0 .
- Desirable because Gaussian convolutions dominate computational cost.

Nyström approximation

- Populating K and finding SVD is costly $(\mathcal{O}(m^3L) \text{ complexity})$.
- Hence, we use another approximation for the SVD itself.
- Nyström approximation⁷:
 - Choose m_o 'representative' points from p_1, \ldots, p_m .
 - Choose $L_0 \ll L$ 'representative' values from $\theta_1, \ldots, \theta_L$.
 - Populate a $m_0L_0 \times m_0$ matrix A similar to K.
 - Compute SVD of A ($\mathcal{O}(m_0^3 L_0)$ complexity).
 - Take singular values of A as the top m_0 singular values of K.
 - Estimate singular vectors of K by 'extrapolating' those of A.

⁷Nemtsov et al., 2016.

Proposed ABF approximation

Instead of SVD of K, use its Nyström approximation,

$$\widehat{\mathsf{K}} = \sum_{k=1}^{m_0} \alpha_k \hat{\boldsymbol{u}}_k \hat{\boldsymbol{v}}_k^\top.$$

This gives the proposed ABF approximation

$$\hat{\boldsymbol{g}}(\boldsymbol{x}) = \frac{\sum_{k=1}^{m_0} \alpha_k \hat{\boldsymbol{u}}_k(\mathbf{r}(\boldsymbol{x}))(\omega * \hat{\boldsymbol{h}}_k)(\boldsymbol{x})}{\sum_{k=1}^{m_0} \alpha_k \hat{\boldsymbol{u}}_k(\mathbf{r}(\boldsymbol{x}))(\omega * \hat{\boldsymbol{d}}_k)(\boldsymbol{x})},$$

where $\hat{d}_k(\mathbf{x}) = \hat{\mathbf{v}}_k(\mathbf{c}(\mathbf{x}))$, $\hat{\mathbf{h}}_k(\mathbf{x}) = \hat{d}_k(\mathbf{x})\mathbf{f}(\mathbf{x})$.

- Dominant computation: $m_0 \mathcal{O}(1)$ Gaussian convolutions.
- Accuracy of approximation increases with m₀.

Code: https://github.com/pravin1390/CABF

Brief overview:

- Objective: Remove coarse textures in an image.
- Can be accomplished using the ABF⁸.
- → θ(x) is decided using a metric that distinguishes texture from edges.
- We use our proposed algorithm for color filtering.

⁸Gavaskar and Chaudhury, TIP 2019.

Method 1: Fast ABF (Gavaskar and Chaudhury, ICIP 2019).

Brief overview:

- Objective: Smooth out blocking artifacts in JPEG-compressed images.
- ► For grayscale images, can be accomplished using the ABF⁹.
- $\theta(\mathbf{x})$ is decided using a technique proposed previously⁹.
- ► We use our proposed algorithm for grayscale filtering.

⁹Zhang and Gunturk, 2009.

Ground-truth.

Brute-force (28.6 dB, 3.3s).

Proposed (28.5 dB, 0.15s).

Method 2 (28.5 dB, 0.16s).

Method 2: Fast ABF (Gavaskar and Chaudhury, TIP 2019).

Brief overview:

- Objective: Enhance details, but not to the same extent everywhere.
- More enhancement in regions which are more visually salient.
- Can be accomplished using the ABF¹⁰.
- $\theta(\mathbf{x})$ is decided using a saliency map.
- ► We use our proposed algorithm for color filtering.

¹⁰Ghosh et al., 2019.

Input.

Brute-force (24s).

Proposed (38.6 dB, 5s).

Conclusion

- Proposed $\mathcal{O}(1)$ algorithm for adaptive bilateral filtering.
- ▶ Better accuracy than the only existing O(1) algorithm for color ABF.
- Core idea: Low-rank Nyström approximation of a kernel matrix.
- Achieves up to $20 \times$ speedup with high accuracy.
- Applicable to texture filtering, detail enhancement, and deblocking.
- Can be extended in principle to multi-channel images, and NLM filtering.

Research supported by CRG Grant SB/S3/EECE/281/2016 from DST-SERB, Government of India.

References I

- C. Tomasi and R. Manduchi, "Bilateral filtering for gray and color images," Proc. IEEE International Conference on Computer Vision, pp. 839–846, 1998.
- B. Zhang and J. P. Allebach, "Adaptive bilateral filter for sharpness enhancement and noise removal," IEEE Transactions on Image Processing, vol. 17, no. 5, pp. 664–678, 2008.
- M. Zhang and B. K. Gunturk, "Compression artifact reduction with adaptive bilateral filtering," Proc. SPIE Visual Communications and Image Processing, vol. 7257, 2009.
- P. Nair and K. N. Chaudhury, "Fast high-dimensional kernel filtering," IEEE Signal Processing Letters, vol. 26, no. 2, pp. 377–381, 2019.
- R. Deriche, "Recursively implementing the Gaussian and its derivatives," Research Report RR-1893, INRIA, 1993.

References II

- R. G. Gavaskar and K. N. Chaudhury, "Fast adaptive bilateral filtering," IEEE Transactions on Image Processing, vol. 28, no. 2, pp. 779–790, 2019.
- A. Nemtsov, A. Averbuch, and A. Schclar, "Matrix compression using the Nyström method," Intelligent Data Analysis, vol. 20, no. 5, pp. 997–1019, 2016.
- S. Ghosh, R. G. Gavaskar, and K. N. Chaudhury, "Saliency guided image detail enhancement," Proc. National Conference on Communications, pp. 1–6, 2019.
- R. G. Gavaskar and K. N. Chaudhury, "Fast adaptive bilateral filtering of color images," Proc. IEEE International Conference on Image Processing, pp. 180–184, 2019.

Thanks for listening!