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LPCNET-BASED NEURAL VOCODING 1 sytess process
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Incorporate linear prediction (LP) structure within WaveRNN framework X =e +p
LP coefficients, Previous speech samples,
[ay, ..., ay] Compute . [Xn—1, s Xn—p]

Prediction

Prediction term, p,,

»
L

1
, v o v
Acoustic R . 8-bit Softmax | EXclfation. e’l/ \ . Current speech sample,

features, h >  WaveRNN & Sampling i 'k/ r x
= | : n

3 | -

e e — e e I

:._______________‘ _____________ ‘ __________ 4

[Block diagram of LPCNet]
Characteristics

- WaveRNN architecture
 Accelerate the generation speed of autoregressive neural vocoder
 LP synthesis-based spectral shaping filter
» Achieve good synthesis quality by attenuating quantization noise caused by u-law modeling

» Various tuning methods for u-law modeling

+ Waveform embedding, discrete training noise injection, conditional sampling for softmax
distribution, pre-emphasis filter, ...



L P c N ET- BAS E D N E U RAL voco DI N G [LP s;;nthesis process]
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Incorporate linear prediction (LP) structure within WaveRNN framework X =e +p,
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[Block diagram of LPCNet]

Methods to improve performance

 Replace the u-law waveform model with a continuous waveform model
 Improve synthesis quality by utilizing densely distributed waveform sample
+ Simplify the tuning methods



LPCNET-BASED NEURAL VOCODING

Incorporate linear prediction (LP) structure within WaveRNN framework
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[Block diagram of LPCNet]

Methods to improve performance

[ )

[ )

 Suggest a closed-loop solution of LP structure for compact representation

[LP synthesis process]
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Linear prediction Mixture density network

LP-STRUCTURED MDN

Basic assumption on autoregressive neural vocoder

p(en |X<n3h) p(‘xn |X<n’h)

0.018

1. Previous speech samples, x.,, are given ,
2. LP coefficients, {a,;}, are given | Py
I 0.01 -
Their linear combination, r, =Y.a,.x,.., are also given
i=1 0.006 -
Probabilistic analysis
Xn = en +pn 3 2 -1 0 1 2 3

[Conditional distributions of speech and excitation]

Xn|(X h):En|(X<n’h)+pn

<n?

Random variables X,, and E,, are depends on only the constant difference of p,,

Mixture of Gaussian (MoG) modeling

al 1 (‘xn _Iuni)2
p(xn | X<n’lln) = Za)n ) exp |:2—2,

- N27s,; y
- Utilize the shifting property of 2" order random variable
o =
M =M+ D,
s; =8

Difference between speech and excitation's mixture parameters are only mean parameters N~



Linear prediction Mixture density network

LP-STRUCTURED MDN

LP-MDN-based neural vocoding

. _ Current speech sample, x,,
1. Mixture parameter predlctlon

A

! Previous speech samples,
o _u s | _
':Zn ,Z ,zn] = NeuralVocoder (x_,,h,) (X1 Xnnt]
2. Compute prediction term
P Mixture of Gaussian
b, = Z QX i model
i=1 7 Y A 7 Y
3. Mixture parameter modification © S Ml Pprediction 1
o Soft- v r \‘ Term. p,, Compute
®, =softmax(z;’) v max xp \ _/ - Prediction
" 7} A 7y A
n, w TP, 7z o} Z s Z )i
s, =exp(z,)
Autoregressive
4. MoG likelihood calculation Neural vocoder
) A 7y
s 1 (‘xn —H, i) > >
= t ! Samples, X, Acoustic [ay,..., an]

Features, h
5. Train the network to minimize negative log-likelihood loss

Lnll = Z[_log p(xn | x<n’hn)]

[Neural vocoder with LP-MDN framework]



Improved LPCNet

ILPCNET VOCODER

Acoustic

Upsampling network featues. b
LP coefficients,
« Match the time-resolution of acoustic features to the sampling (@, .., au] Upsampling
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EFFECTIVE TRAINING AND GENERATION METHODS

Short-time Fourier transform (STFT)-based power loss

A 12 Input  _| 1—az-1 Sn /] e”V 00) ,  Training
L, = HSTFT(X) —STFT(X)H Speech I P L Targel
2
00 IR
L - Lnll + ZLpl Pn
- Capture the time-frequency distribution of the speech Nosse D10 1| prdetion 120 ("o’
waveform

Continuous training noise injection

. 4
X, =X, + Fg, where € ~ N (0,1)

ttttt

x, =iLPCNet(x, ;,h,)

n—1°
——,

« Train the propagated prediction error via autoregressive
connection

 Simplify complicated noise injection pipeline of original
LPCNet

[Noise injection process of LPCNet]

Input . Training
Speech "~ Target
A 4
Z—l
Ay, T
. R . Training
Noise AW > Input

[Noise injection process of iLPCNet]
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EFFECTIVE TRAINING AND GENERATION METHODS

Conditional sampling for MoG distribution
 Conventional random sampling method
xrand ~ N (/J,S)

Noisy artifacts in the voiced region

« Distribution sharpening method

Xgarp ~ N (1,¢5), where ¢ <1

N

Eliminate noisy artifacts by reducing noise component

* Proposed conditional sampling method

Random sampling Conditional sampling (c=0.5) Conditional sampling (c=0.0)
x=vuv-xg,, +(1=vuv)-x,
Sharpened sampling Random sampling
at the voiced region at the unvoiced region

==L e e——

2 325 33 335 34 345 35 355 36 365 37
time (s) time (s) time (s)

0
3 2 325 33 335 34 345 35 355 36 365 37

0
3

[Spectrogram example of conditional sampling ]
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COMPARISON WITH ORIGINAL LPCNET

LPCNet

Proposed iLPCNet

Distribution type

Discrete

Continuous

Method to reflect
LP structure

Feeding LP-related signals,

[€n—1, Xn-1,Pn], into GRU

LP-MDN

Open-loop solution

Closed-loop solution

Target of WaveRNN

Excitation

Speech

Tuning methods

Waveform embedding

STFT-based power loss

Discrete noise injection

Continuous noise injection

Conditional sharpening for
softmax distribution

Conditional sharpening for
MoG distribution
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EXPERIMENT SETUP

Common settings

Database Korean professional female
Sampling rate / Quantization bit 24kHz / 16 bits
Training / validation / test 4,976 (9.9 hours) / 280 / 140
Extracted by ITFTE vocoder [1]
. 79-dim.
Acoustic features 5-ms (=120 samples) frame shift
Zero mean & unit variance normalization

Neural vocoders

* WaveNet [2]
« LPCNet [3]
* Proposed iLPCNet

Scenarios
* Analysis / synthesis (A/S) scenario

* Text-to-speech (TTS) scenario
* Tacotron 2 acoustic model [4]

Performance evaluation

« Mean opinion score (MOS) listening test
« A-B preference test

[1] E. Song et.al., "Effective spectral and excitation modeling techniques for LSTM-RNN-based speech synthesis systems,” in IEEE/ACM Trans. ASLP, 2017

[2] A. van den Oord et. al., "WaveNet: A generative model for raw audio," arXiv preprint, 2016

[3] J.-M. Valin and J. Skoglund, "LPCNet: Improving neural speech synthesis through linear prediction," in Proc. ICASSP, 2019. ™
[4] J. Shen et. al., "Natural TTS synthesis by conditioning WaveNet on Mel spectrogram prediction," in Proc. ICASSP, 2018 A



EXPERIMENT SETUP

Neural vocoders

« WaveNet vocoder

Dilation 3*[1,2,4 8 16, 32, 64, 128, 256, 512]
Layer 30
Receptive field 3,071
Skip channels 128
Residual channels 128
* LPCNet vocoder
FC layer dimension 64
GRU A dimension 256
GRU B dimension 16
Waveform embedding dimension 256
» Proposed iLPCNet vocoder
FC layer dimension 256
Transposed convolution kernel size 120 (5-ms)
GRU A dimension 256
GRU B dimension 16
Speech distribution Single Gaussian distribution
Power loss weight, 4 10.0
Sharpening factor, ¢ 0.7

« Same GRU size with LPCNet vocoder
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EXPERIMENT SETUP

Tacotron 2 acoustic model for TTS scenario

Character embedding Dimension 512
Number of layers 3
Encoder | Convolution layer Kernel size 10X1
Channels 512
BiLSTM layer Units 512
. . . ) Dimension 128
Attention | Location-sensitive attention )
Kernel size 64X1
Number of layers 2
Pre-net FC layer : -
Dimension 256
Number of layers 2
LSTM layer .
Decoder Units 1,024
Number of layers 5
Post-net convolution layer Kernel size 5X1
Channels 512
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PERFORMANCE EVALUATIONS

MOS test

* Score the quality of speech
* 15 native Korean listeners
* 15 randomly selected synthesized utterances from test set

Results
MOS test result

5 4.71 i i /
1 A/S 4.34 1 TTS 4.41
| 4.05 |

4 i !
1 |
| |

3 ! !
| |
1 |

o) ! !
| |
| |
1

[Scoring criteria for MOS test]

Score| Quality Impairment
5 | Excellent Imperceptible
4 Good Perceptible.but
not annoying
3 Fair Slightly annoying
2 Poor Annoying
1 Bad Very annoying
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PERFORMANCE EVALUATIONS

A-B preference test

 Rate the quality preference
* 15 native Korean listeners
« 15 randomly selected synthesized utterances from test set

Results

I LPCNet [ [iLPCNet (ours) [ INeutral

p-value = 0.06

p-value < 10719
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SUMMARY & CONCLUSION

Summary

* Proposed an improved LPCNet (iLPCNet) vocoder-based parametric TTS system

Linear prediction (LP)-structured mixture density network (MDN)

« Structurally constructed the LP structure within an autoregressive neural vocoder framework

Improved LPCNet vocoder

* Incorporated LP-MDN into LPCNet vocoder with additional effective training and generation methods

 Achieved simpler and more compact architecture by removing extra modules in LPCNet, which was
designed for handling the quantization effect caused by u-law method

Performance evaluation results

 Outperformed the conventional neural vocoding systems
* 4.41 MOS result
+ 27.5% higher quality preference than conventional LPCNet vocoder
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