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OVERVIEW
Paper objective

• Improving the quality of LPCNet-based parametric speech synthesis system

Proposed systems

• LP-MDN: Linear prediction-structured mixture density network
• Structurally merge the LP process with an autoregressive neural vocoding framework

• iLPCNet: Improved LPCNet vocoder
• Incorporating LP-MDN into LPCNet framework

• Effective training and generation methods

Performance
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[Overview of proposed iLPCNet]

[MOS test result] [Preference test result]
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3[1] J.-M. Valin and J. Skoglund, "LPCNet: Improving neural speech synthesis through linear prediction," in Proc. ICASSP, 2019.



LPCNET-BASED NEURAL VOCODING
Incorporate linear prediction (LP) structure within WaveRNN framework

Characteristics

• WaveRNN architecture
• Accelerate the generation speed of autoregressive neural vocoder

• LP synthesis-based spectral shaping filter 
• Achieve good synthesis quality by attenuating quantization noise caused by !-law modeling

• Various tuning methods for !-law modeling
• Waveform embedding, discrete training noise injection, conditional sampling for softmax 

distribution, pre-emphasis filter, ...
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[LP synthesis process]
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[Block diagram of LPCNet]



LPCNET-BASED NEURAL VOCODING
Incorporate linear prediction (LP) structure within WaveRNN framework

Methods to improve performance

• Replace the !-law waveform model with a continuous waveform model
• Improve synthesis quality by utilizing densely distributed waveform sample
• Simplify the tuning methods
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[Block diagram of LPCNet]

[LP synthesis process]
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LPCNET-BASED NEURAL VOCODING
Incorporate linear prediction (LP) structure within WaveRNN framework

Methods to improve performance

• Replace the !-law waveform model with a continuous waveform model
• Improve synthesis quality by utilizing densely distributed waveform sample
• Simplify the tuning methods

• Suggest a closed-loop solution of LP structure for compact representation
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[Block diagram of LPCNet]

[LP synthesis process]
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LP-STRUCTURED MDN
Basic assumption on autoregressive neural vocoder

1. Previous speech samples, !"#, are given
2. LP coefficients, {%#,'}, are given

Probabilistic analysis

Mixture of Gaussian (MoG) modeling

• Utilize the shifting property of 2nd order random variable

7

Linear prediction Mixture density network
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[Conditional distributions of speech and excitation]

Random variables )# and *# are depends on only the constant difference of +#
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LP-STRUCTURED MDN
LP-MDN-based neural vocoding

1. Mixture parameter prediction

2. Compute prediction term

3. Mixture parameter modification

4. MoG likelihood calculation

5. Train the network to minimize negative log-likelihood loss
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Linear prediction Mixture density network
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ILPCNET VOCODER
Upsampling network

• Match the time-resolution of acoustic features to the sampling 
rate of speech signal

• Architecture
• Two stacks of convolution layer

• Extract contextual information of acoustic features
• Transposed convolution layer

• Upsample the context features

Waveform generation network

• Autoregressively generate waveform samples

• Architecture
• Two stacks of gated recurrent unit (GRU) layers
• Apply LP-MDN to generate the speech's distribution
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Improved LPCNet

[Block diagram of iLPCNet vocoder]



EFFECTIVE TRAINING AND GENERATION METHODS

Short-time Fourier transform (STFT)-based power loss

• Capture the time-frequency distribution of the speech 
waveform

Continuous training noise injection

• Train the propagated prediction error via autoregressive 
connection

• Simplify complicated noise injection pipeline of original 
LPCNet
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EFFECTIVE TRAINING AND GENERATION METHODS

Conditional sampling for MoG distribution

• Conventional random sampling method

• Distribution sharpening method

• Proposed conditional sampling method
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Noisy artifacts in the voiced region

(1 )sharp randx vuv x vuv x= × + - ×

Sharpened sampling
at the voiced region

Random sampling
at the unvoiced region

Eliminate noisy artifacts by reducing noise component

[Spectrogram example of conditional sampling ]
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COMPARISON WITH ORIGINAL LPCNET
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LPCNet Proposed iLPCNet

Distribution type Discrete Continuous

Method to reflect 
LP structure

Feeding LP-related signals, 
["#$%, '#$%, (#], into GRU

LP-MDN

Open-loop solution Closed-loop solution

Target of WaveRNN Excitation Speech

Tuning methods

Waveform embedding STFT-based power loss

Discrete noise injection Continuous noise injection

Conditional sharpening for 
softmax distribution

Conditional sharpening for 
MoG distribution



EXPERIMENT SETUP
Common settings

Neural vocoders
• WaveNet [2]
• LPCNet [3]
• Proposed iLPCNet

Scenarios

• Analysis / synthesis (A/S) scenario
• Text-to-speech (TTS) scenario

• Tacotron 2 acoustic model [4]

Performance evaluation

• Mean opinion score (MOS) listening test
• A-B preference test
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Database Korean professional female
Sampling rate / Quantization bit 24kHz / 16 bits

Training / validation / test 4,976 (9.9 hours) / 280 / 140

Acoustic features

Extracted by ITFTE vocoder [1]
79-dim.

5-ms (=120 samples) frame shift
Zero mean & unit variance normalization

[1] E. Song et.al., "Effective spectral and excitation modeling techniques for LSTM-RNN-based speech synthesis systems," in IEEE/ACM Trans. ASLP, 2017
[2] A. van den Oord et. al., "WaveNet: A generative model for raw audio," arXiv preprint, 2016
[3] J.-M. Valin and J. Skoglund, "LPCNet: Improving neural speech synthesis through linear prediction," in Proc. ICASSP, 2019.
[4] J. Shen et. al., "Natural TTS synthesis by conditioning WaveNet on Mel spectrogram prediction," in Proc. ICASSP, 2018

[Demo]



EXPERIMENT SETUP
Neural vocoders

• WaveNet vocoder

• LPCNet vocoder

• Proposed iLPCNet vocoder

• Same GRU size with LPCNet vocoder
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Dilation 3 * [1, 2, 4, 8, 16, 32, 64, 128, 256, 512]
Layer 30

Receptive field 3,071
Skip channels 128

Residual channels 128

FC layer dimension 64

GRU A dimension 256
GRU B dimension 16

Waveform embedding dimension 256

FC layer dimension 256

Transposed convolution kernel size 120 (5-ms)

GRU A dimension 256
GRU B dimension 16

Speech distribution Single Gaussian distribution
Power loss weight, ! 10.0
Sharpening factor, " 0.7

[Demo]



EXPERIMENT SETUP
Tacotron 2 acoustic model for TTS scenario
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Encoder

Character embedding Dimension 512

Convolution layer

Number of layers 3

Kernel size 10×1

Channels 512

BiLSTM layer Units 512

Attention Location-sensitive attention
Dimension 128

Kernel size 64×1

Decoder

Pre-net FC layer
Number of layers 2

Dimension 256

LSTM layer
Number of layers 2

Units 1,024

Post-net convolution layer

Number of layers 5

Kernel size 5×1

Channels 512

[Demo]



PERFORMANCE EVALUATIONS
MOS test

• Score the quality of speech
• 15 native Korean listeners
• 15 randomly selected synthesized utterances from test set

Results
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Score Quality Impairment
5 Excellent Imperceptible

4 Good
Perceptible but 
not annoying

3 Fair Slightly annoying
2 Poor Annoying
1 Bad Very annoying

[Scoring criteria for MOS test]

[Demo]



PERFORMANCE EVALUATIONS
A-B preference test 

• Rate the quality preference
• 15 native Korean listeners
• 15 randomly selected synthesized utterances from test set

Results
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[Demo]



SUMMARY & CONCLUSION
Summary

• Proposed an improved LPCNet (iLPCNet) vocoder-based parametric TTS system

Linear prediction (LP)-structured mixture density network (MDN)

• Structurally constructed the LP structure within an autoregressive neural vocoder framework

Improved LPCNet vocoder

• Incorporated LP-MDN into LPCNet vocoder with additional effective training and generation methods
• Achieved simpler and more compact architecture by removing extra modules in LPCNet, which was 

designed for handling the quantization effect caused by !-law method

Performance evaluation results

• Outperformed the conventional neural vocoding systems
• 4.41 MOS result
• 27.5% higher quality preference than conventional LPCNet vocoder
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