

Improving LPCNet-based Text-to-Speech with Linear Prediction-structured Mixture Density Network

Min-Jae Hwang^{1,2}, Eunwoo Song³, Ryuichi Yamamoto⁴, Frank Soong⁵ and Hong-Goo Kang²

> ¹Search Solutions Inc., South Korea ²Yonsei Univ., South Korea, ³NAVER Corp., South Korea ⁴Line Corp., Japan, ⁵Microsoft Research Asia, China

OVERVIEW

Paper objective

• Improving the quality of LPCNet-based parametric speech synthesis system

Proposed systems

- LP-MDN: Linear prediction-structured mixture density network
 - Structurally merge the LP process with an autoregressive neural vocoding framework
- iLPCNet: Improved LPCNet vocoder
 - Incorporating LP-MDN into LPCNet framework
- Effective training and generation methods

Performance

[Overview of proposed iLPCNet]

CONTENTS

Introduction

• LPCNet-based neural vocoding [1]

Proposed system

- Linear prediction-structured mixture density network
- Improved LPCNet vocoder
- Effective training and generation methods

Experiments

• Performance evaluations

Summary & Conclusion

LPCNET-BASED NEURAL VOCODING

[LP synthesis process]

 $p_n = \sum_{i=1}^{p} \alpha_i x_{n-i}.$ $x_n = e_n + p_n$

Incorporate linear prediction (LP) structure within WaveRNN framework

Characteristics

- WaveRNN architecture
 - Accelerate the generation speed of autoregressive neural vocoder
- LP synthesis-based spectral shaping filter
 - Achieve good synthesis quality by attenuating quantization noise caused by μ -law modeling
- Various tuning methods for μ -law modeling
 - Waveform embedding, discrete training noise injection, conditional sampling for softmax distribution, pre-emphasis filter, ...

LPCNET-BASED NEURAL VOCODING

[LP synthesis process]

 $p_n = \sum_{i=1}^{P} \alpha_i x_{n-i}.$ $x_n = e_n + p_n$

Incorporate linear prediction (LP) structure within WaveRNN framework

[Block diagram of LPCNet]

Methods to improve performance

- Replace the μ -law waveform model with a continuous waveform model
 - Improve synthesis quality by utilizing densely distributed waveform sample
 - Simplify the tuning methods

LPCNET-BASED NEURAL VOCODING

[LP synthesis process]

 $p_n = \sum_{i=1}^{p} \alpha_i x_{n-i}.$ $x_n = e_n + p_n$

Incorporate linear prediction (LP) structure within WaveRNN framework

Methods to improve performance

- Replace the μ -law waveform model with a continuous waveform model
 - Improve synthesis quality by utilizing densely distributed waveform sample
 - Simplify the tuning methods
- Suggest a closed-loop solution of LP structure for compact representation

Linear prediction

Mixture density network

LP-STRUCTURED MDN

Basic assumption on autoregressive neural vocoder

- 1. Previous speech samples, $\mathbf{x}_{< n}$, are given
- 2. LP coefficients, $\{\alpha_{n,i}\}$, are given

Their linear combination, $p_n = \sum_{i=1}^{p} \alpha_{n,i} x_{n-i}$, are also given

Probabilistic analysis

 $x_n = e_n + p_n$ $X_n | (\mathbf{x}_{< n}, \mathbf{h}) = E_n | (\mathbf{x}_{< n}, \mathbf{h}) + p_n$

Random variables X_n and E_n are depends on only the constant difference of p_n

Mixture of Gaussian (MoG) modeling

$$p(x_n | \mathbf{x}_{< n}, \mathbf{h}_n) = \sum_{n=1}^{N} \omega_n \cdot \frac{1}{\sqrt{2\pi} s_{n,i}} \exp\left[\frac{(x_n - \mu_{n,i})^2}{2s_{n,i}^2}\right]$$

Utilize the shifting property of 2nd order random variable

$$\omega_i^x = \omega_i^e$$

 $\mu_i^x = \mu_i^e + p_n$
 $s_i^x = s_i^e$

Difference between speech and excitation's mixture parameters are only mean parameters

[Conditional distributions of speech and excitation]

Linear prediction

Mixture density network

LP-STRUCTURED MDN

LP-MDN-based neural vocoding

1. Mixture parameter prediction

$$\left[\mathbf{z}_{n}^{\omega},\mathbf{z}_{n}^{\mu},\mathbf{z}_{n}^{s}\right] = NeuralVocoder\left(\mathbf{x}_{< n},\mathbf{h}_{n}\right)$$

2. Compute prediction term p_{p}

$$p_n = \sum_{i=1}^{P} \alpha_{n,i} x_{n-i}$$

- 3. Mixture parameter modification
 - $\boldsymbol{\omega}_n = \operatorname{softmax}(\mathbf{z}_n^{\omega})$ $\boldsymbol{\mu}_n = \mathbf{z}_n^{\mu} + p_n$ $\mathbf{s}_n = \exp(\mathbf{z}_n^s)$
- 4. MoG likelihood calculation

$$p(x_n \mid \mathbf{x}_{< n}, \mathbf{h}_n) = \sum_{i=1}^N \omega_{n,i} \cdot \frac{1}{\sqrt{2\pi} s_{n,i}} \exp\left[-\frac{(x_n - \mu_{n,i})^2}{2s_{n,i}^2}\right]$$

5. Train the network to minimize negative log-likelihood loss

[Neural vocoder with LP-MDN framework]

Improved LPCNet

Upsampling network

- Match the time-resolution of acoustic features to the sampling rate of speech signal
- Architecture
 - Two stacks of convolution layer
 - Extract contextual information of acoustic features
 - Transposed convolution layer
 - Upsample the context features

Waveform generation network

- Autoregressively generate waveform samples
- Architecture
 - Two stacks of gated recurrent unit (GRU) layers
 - Apply LP-MDN to generate the speech's distribution

EFFECTIVE TRAINING AND GENERATION METHODS

Short-time Fourier transform (STFT)-based power loss

 $\mathbf{L}_{pl} = \left\| STFT(\mathbf{x}) - STFT(\hat{\mathbf{x}}) \right\|_{2}^{2}$ $\mathbf{L} = \mathbf{L}_{nll} + \lambda \mathbf{L}_{pl}$

 Capture the time-frequency distribution of the speech waveform

Continuous training noise injection

$$\hat{x}_{n-1} = x_{n-1} + \frac{4}{2^{16}}\varepsilon$$
, where $\varepsilon \sim N(0,1)$
 $x_n = iLPCNet(\hat{x}_{n-1}, \mathbf{h}_n)$

- Train the propagated prediction error via autoregressive connection
- Simplify complicated noise injection pipeline of original LPCNet

[Noise injection process of iLPCNet]

EFFECTIVE TRAINING AND GENERATION METHODS

Conditional sampling for MoG distribution

Conventional random sampling method

 $x_{rand} \sim N(\mu, s)$

Distribution sharpening method

 $x_{sharp} \sim N \ (\mu, c \cdot s), \text{ where } c < 1$

Eliminate noisy artifacts by reducing noise component

• Proposed conditional sampling method

 $x = vuv \cdot x_{sharp} + (1 - vuv) \cdot x_{rand}$

Sharpened sampling at the voiced region

Random sampling at the unvoiced region

[Spectrogram example of conditional sampling]

COMPARISON WITH ORIGINAL LPCNET

	LPCNet	Proposed iLPCNet
Distribution type	Discrete	Continuous
Method to reflect	Feeding LP-related signals, $[e_{n-1}, x_{n-1}, p_n]$, into GRU	LP-MDN
LP structure	Open-loop solution	Closed-loop solution
Target of WaveRNN	Excitation	Speech
	Waveform embedding	STFT-based power loss
Tuning mothods	Discrete noise injection	Continuous noise injection
runing methods	Conditional sharpening for softmax distribution	Conditional sharpening for MoG distribution

EXPERIMENT SETUP

Common settings

Database	Korean professional female	
Sampling rate / Quantization bit	24kHz / 16 bits	
Training / validation / test	4,976 (9.9 hours) / 280 / 140	
	Extracted by ITFTE vocoder [1]	
A counting for atomics	79-dim.	
Acoustic leatures	5-ms (=120 samples) frame shift	
	Zero mean & unit variance normalization	

Neural vocoders

- WaveNet [2]
- LPCNet [3]
- Proposed iLPCNet

Scenarios

- Analysis / synthesis (A/S) scenario
- Text-to-speech (TTS) scenario
 - Tacotron 2 acoustic model [4]

Performance evaluation

- Mean opinion score (MOS) listening test
- A-B preference test

[1] E. Song et.al., "Effective spectral and excitation modeling techniques for LSTM-RNN-based speech synthesis systems," in *IEEE/ACM Trans. ASLP*, 2017 [2] A. van den Oord et. al., "WaveNet: A generative model for raw audio," *arXiv preprint*, 2016

[3] J.-M. Valin and J. Skoglund, "LPCNet: Improving neural speech synthesis through linear prediction," in Proc. ICASSP, 2019.

[4] J. Shen et. al., "Natural TTS synthesis by conditioning WaveNet on Mel spectrogram prediction," in Proc. ICASSP, 2018

EXPERIMENT SETUP

Neural vocoders

• WaveNet vocoder

Dilation	3 * [1, 2, 4, 8, 16, 32, 64, 128, 256, 512]	
Layer	30	
Receptive field	3,071	
Skip channels	128	
Residual channels	128	

• LPCNet vocoder

FC layer dimension	64
GRU A dimension	256
GRU B dimension	16
Waveform embedding dimension	256

• Proposed iLPCNet vocoder

FC layer dimension	256	
Transposed convolution kernel size	120 (5-ms)	
GRU A dimension	256	
GRU B dimension	16	
Speech distribution	Single Gaussian distribution	
Power loss weight, λ	10.0	
Sharpening factor, c	0.7	

• Same GRU size with LPCNet vocoder

EXPERIMENT SETUP

Tacotron 2 acoustic model for TTS scenario

	Character embedding	Dimension	512
		Number of layers	3
Encoder	Convolution layer	Kernel size	10×1
		Channels	512
	BiLSTM layer	Units	512
A 44 4 ¹		Dimension	128
Attention	Location-sensitive attention	Kernel size	64×1
Decoder	Dre net FC lever	Number of layers	2
	Pre-net FC layer	Dimension	256
		Number of layers	2
	LSTM layer	Units	1,024
		Number of layers	5
	Post-net convolution layer	Kernel size	5×1
		Channels	512

PERFORMANCE EVALUATIONS

MOS test

- Score the quality of speech
- 15 native Korean listeners
- 15 randomly selected synthesized utterances from test set

Results

[Demo]

[Scoring criteria for MOS test]

Score		Quality	Impairment	
	5 Excellent		Imperceptible	
	A Good	Good	Perceptible but	
	-	Guu	not annoying	
	3 Fair 2 Poor		Slightly annoying	
			Annoying	
	1	1 Bad Very annoying		

PERFORMANCE EVALUATIONS

A-B preference test

- Rate the quality preference
- 15 native Korean listeners
- 15 randomly selected synthesized utterances from test set

Results

		LPCNet LPCN	LPCNet iLPCNet (ours) Neutral	
A/S	33.3 %	42.5 %	24.2 %	
			p-value = 0.06	
TTS	20.8 %	48.3 %	30.8 %	
			p-value < 10 ⁻¹⁰	

SUMMARY & CONCLUSION

Summary

• Proposed an improved LPCNet (iLPCNet) vocoder-based parametric TTS system

Linear prediction (LP)-structured mixture density network (MDN)

• Structurally constructed the LP structure within an autoregressive neural vocoder framework

Improved LPCNet vocoder

- Incorporated LP-MDN into LPCNet vocoder with additional effective training and generation methods
- Achieved simpler and more compact architecture by removing extra modules in LPCNet, which was designed for handling the quantization effect caused by μ -law method

Performance evaluation results

- Outperformed the conventional neural vocoding systems
 - 4.41 MOS result
 - 27.5% higher quality preference than conventional LPCNet vocoder

Thank you!