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Introduction

• CELP based coding is integral part of state-of-the-art communication 
codecs such as AMR-WB[1], 3GPP EVS[2] etc. 

• Quality of such codecs deteriorates at low bitrates due to high 
quantization noise. 

• Usually, post-filters are employed to enhance the quality of coded 
speech at low  bit-rates. These post-filters emphasize the pitch and 
formant structures of the coded speech using the LPC and LTP
information. 

• One such example of a post-filter is G.718 [3].

• Recently a DNN-based post-filter in cepstrum (Cepstrum-CNN)
domain was proposed in [4]. 
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Our Contribution

• We propose a mask-based approach in spectral domain to enhance the 
quality of the coded speech. 

• The proposed approach was implemented using:

• Fully Connected Neural Network ( FCNN )

• Convolutional Encoder Decoder ( CED )

• Long Short Term Memory ( LSTM )

• We compare our proposed system to heuristic post-filter adopted in the 
standard G.718 and Cepstrum-CNN. 

• The proposed model is trained on s ingle bitrate (6.65 kbps) and 
tested on bitrates ranging from 6.65 kbps to 15.85 kbps.  

• Robustness was validated by cross-database testing

• POLQA[5] and MUSHRA[6] was used for objective and subjective 
evaluation respectively. 
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Oracle Experiments (1/3)

• Spectral magnitude of enhanced speech (|𝑿(𝒌, 𝒏)|) is given by: 

𝑋(𝑘, 𝑛) = 𝑀 𝑘, 𝑛 ∗ | ෨𝑋 𝑘, 𝑛 |

• If the mask is ideal, spectral magnitude of enhanced speech is same as 
spectral magnitude of clean speech.

• The ideal ratio mask (IRM) is given as: IRM 𝑘, 𝑛 =
|𝑋(𝑘,𝑛)|

෨𝑋 𝑘,𝑛 + ∈

Mask
Thresholds

6.65 kbps 8.85 kbps 12.65 kbps

[0,1] 38.94% 41.00% 44.09%

(1,2] 31.19% 33.44% 36.20%

(2,5] 21.40% 18.69% 14.66%

8.46% 6.87% 5.05%

Table 1: Percentage of real-valued mask in different threshold 
regions measured at lowest three bitrates of AMR-WB.
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Oracle Experiments (2/3)

Fig 1: Average POLQA scores evaluating the oracle experiment 
at lowest 2 bitrates of AMR-WB (6.65kbps and 8.85kbps) 



© Fraunhofer IIS 7

Oracle Experiments (3/3)

Fig 2: Spectogram comparison for Oracle case
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Modified Signal Approximation

• The proposed model is trained using modified signal approximation 
(mod-SA)

• Main motivation behind mod-SA was to obtain generalized model. 

• The main difference between our proposed mod-SA with the traditional 
signal approximation (SA) [7] are as follows:

• The modified mask are computed as follows:

𝑀 𝑘, 𝑛 =
IRM 𝑘, 𝑛 if IRM 𝑘, 𝑛 ≤ 𝛼
𝜌 if IRM 𝑘, 𝑛 > 𝛼

• We set ρ as 1 and α as 2. This means, for bins, where IRM is greater 
than 2, the coded speech magnitude is kept unchanged.

• The target is also modified as follows: ത𝑋 𝑘, 𝑛 = 𝑀 𝑘, 𝑛 ∗ | ෨𝑋(𝑘, 𝑛)|

• The mean square error (mse) loss is computed between spectral 
magnitude of modified target and enhanced speech in log-
magnitude domain. 
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Experimental Setup (1/3)

Sampling Rate 16000

Transform STFT

Analys is /Synthesis Window Square root of Hann

Frame Size, Overlap 32ms, 50%

FFT S ize 512

Processed Bandwidth Upto 6.4kHz (205 bins)

DNN Input Normalized Log Magnitude

Phase Process ing No

• The past frames were used as context frames

• Preprocessing for clean (target) speech: P.341 filter[8] (cutoff frequency 
7kHz), active speech level was adjusted to -26 dBov [9].

• The coded speech was also post-processed with P.341 filter. 
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Experimental Setup (2/3)

• 3 models were tested:

• FCNN: 

• Input Layer Size: 820 (3 past frames and current frame). 

• 2 hidden layers with 1024 units and ReLU activations.  

• Batch normalization,  dropout of 0.1.  

• LSTM: 

• 2 LSTM layers with 400 and 205 units respectively 

• Input: 10 time steps (9 past frames and current frame). 

• A dropout of 0.1 and recurrent dropout of 0.2 is used. 

• CED:

• Input: 6 time steps (5 past frames plus current one)

• ELU activation, batch normalization, skip connections. 

• Output: 205 units of sigmoid activations with scaling factor of 2. 
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Experimental Setup (3/3)

Optimizer Adam

Learning Rate 0.001

Batch Size 32

Convergence/Epochs Early Stopping

Training/ Validation NTT-AT [10] *

Testing NTT-AT*/ TIMIT[11] 

*All files were downsampled to 16kHz and a passive mono downmix
was obtained. 
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Results (1/6)

Fig 3: POLQA scores evaluating the performance of the FCNN, LSTM and 
CED architectures using the NTT test set (lowest 5 modes of AMR-WB).
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Results (2/6)

Fig 4: POLQA scores evaluating the performance of the Cepstrum-CNN, 
CED and G.718 using the NTT test set (lowest 5 modes of AMR-WB).
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Results (3/6)

Fig 5: Average MUSHRA scores of 11 listeners at 6.65 kbps.
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Results (4/6)

Fig 6: Average MUSHRA scores of 11 listeners at 12.65 kbps.
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Results (5/6)

Fig 7: POLQA scores evaluating the performance of Cepstrum-CNN, 
CED and G.718 using the TIMIT test set (lowest 5 modes of AMR-WB).
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Results(6/6)

Network 
Architecture

Number of
Parmaters

Frame Size

FCNN 2,108,621 32 ms

LSTM 1,468,120 32 ms

CED 147,292 32 ms

Cepstrum-CNN 419,805 20 ms

Table 2: Comparison of the number of parameters in different 
network architectures.
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Conclusion

• We have proposed convolutional encoder-decoder (CED) based post-filter 
for enhancing the perceptual quality of coded speech.

• Our proposed post-filter makes no assumption of signal or noise 
characteristics. 

• The proposed post-filter estimates a real valued mask per time-frequency 
bin. 

• The post-filter is trained using modified signal approximation (mod-SA) 
in order to obtain generalized model.

• The generalized model works well at even higher bitrates inspite of 
being trained on lowest bitrate. 

• Robustness of our proposed model is proved by cross-database testing. 



© Fraunhofer IIS 19

References(1/2)

 [1] 3GPP, “Speech codec speech processing functions; Adaptive Multi-
Rate - Wideband (AMR-WB) speech codec; Transcoding functions,” 3rd 
Generation Partnership Project (3GPP), TS 26.190, 12 2009. [Online]. 
Available: http://www.3gpp.org/ftp/Specs/html-info/26190.htm

 [2] ——, “TS 26.445, EVS Codec Detailed Algorithmic Description; 3GPP 
Technical Specification (Release 12),” 3rd Generation Partnership Project 
(3GPP), TS 26.445, 12 2014. [Online]. Available: 
http://www.3gpp.org/ftp/Specs/htmlinfo/26445.htm

 [3] ITU-T Recommendation G.718, “Frame error robust narrowband and 
wideband embedded variable bit-rate coding of speech and audio from 
8–32 kbit/s,” 2008.

 [4] Z. Zhao, H. Liu, and T. Fingscheidt, “Convolutional neural networks to 
enhance coded speech,” IEEE/ACM Transactions on Audio, Speech, and 
Language Processing, vol. 27, no. 4, pp.663–678, April 2019.

 [5] Perceptual objective listening quality assessment (POLQA), ITU-T 
Recommendation P.863, 2011. [Online]. Available: 
http://www.itu.int/rec/T-REC-P.863/en

http://www.3gpp.org/ftp/Specs/htmlinfo/26445.htm


© Fraunhofer IIS 20

References(2/2)

 [6] Recommendation BS.1534, Method for the subjective assessment of 
intermediate quality levels of coding systems, ITU-R, 2003.

 [7] F. Weninger, J. R. Hershey, J. Le Roux, and B. Schuller, 
“Discriminatively trained recurrent neural networks for single-channel
speech separation,” in 2014 IEEE Global Conference on Signal and 
Information Processing (GlobalSIP), Dec 2014, pp. 577–581.

 [8] ITU-T G.191, “Software tools for speech and audio coding 
standardization,” 2005.

 [9] ITU-T P.56, “Objective measurement of active speech level,” 2011.


