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Introduction

«  CELP based coding is integral part of state-of-the-art communication
codecs such as AMR-WB[1], 3GPP EVS[2] etc.

Quality of such codecs deteriorates at low bitrates due to high
quantization noise.

Usually, post-filters are employed to enhance the quality of coded
speech at low bit-rates. These post-filters emphasize the pitch and
formant structures of the coded speech using the LPC and LTP
information.

One such example of a post-filter is G.718 [3].

Recently a DNN-based post-filter in cepstrum (Cepstrum-CNN)
domain was proposed in [4].
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Our Contribution

*  We propose a mask-based approach in spectral domain to enhance the
quality of the coded speech.

*  The proposed approach was implemented using:
Fully Connected Neural Network ( FCNN )
Convolutional Encoder Decoder ( CED )

Long Short Term Memory (LSTM )

*  We compare our proposed system to heuristic post-filter adopted in the
standard G.718 and Cepstrum-CNN.

«  The proposed model is trained on single bitrate (6.65 kbps) and
tested on bitrates ranging from 6.65 kbps to 15.85 kbps.

*  Robustness was validated by cross-database testing

- POLQAJ5] and MUSHRA[6] was used for objective and subjective
evaluation respectively.
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Oracle Experiments (1/3)

- Spectral magnitude of enhanced speech (|X(k,n)|) is given by:
|X(k,n)| = M(k,n) * |X(k,n) |

« If the mask is ideal, spectral magnitude of enhanced speech is same as
spectral magnitude of clean speech.

« The ideal ratio mask (IRM) is given as: IRM(k,n) = %
Thresholds
[0,1] 38.94% 41.00% 44.09%
(1,2] 31.19% 33.44% 36.20%
(2,5] 21.40% 18.69% 14.66%
(5, 0] 8.46% 6.87% 5.05%

Table 1: Percentage of real-valued mask in different threshold
regions measured at lowest three bitrates of AMR-WB.
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Oracle Experiments (2/3)
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Fig 1: Average POLQA scores evaluating the oracle experiment
at lowest 2 bitrates of AMR-WB (6.65kbps and 8.85kbps)
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Oracle Experiments (3/3)
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Fig 2: Spectogram comparison for Oracle case
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Modified Signal Approximation

«  The proposed model is trained using modified signal approximation
(mod-SA)

* Main motivation behind mod-SA was to obtain generalized model.

*  The main difference between our proposed mod-SA with the traditional
signal approximation (SA) [7] are as follows:

The modified mask are computed as follows:

{IRM(k,n) if IRM(k,n) < a}
if IRM(k,n) > «

We set p as 1 and a as 2. This means, for bins, where IRM is greater
than 2, the coded speech magnitude is kept unchanged.

M(k,n) =

The target is also modified as follows: |X(k,n)| = M(k,n) * |X(k,n)|

The mean square error (mse) loss is computed between spectral
magnitude of modified target and enhanced speech in log-
magnitude domain.
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Experimental Setup (1/3)

Sampling Rate 16000
Transform STFT
Analysis/Synthesis Window Square root of Hann
Frame Size, Overlap 32ms, 50%
FFT Size 512
Processed Bandwidth Upto 6.4kHz (205 bins)
DNN Input Normalized Log Magnitude

Phase Processing

No

The past frames were used as context frames

Preprocessing for clean (target) speech: P.341 filter[8] (cutoff frequency
7kHz), active speech level was adjusted to -26 dBov [9].

The coded speech was also post-processed with P.341 filter.
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Experimental Setup (2/3)

* 3 models were tested:

FCNN:
Input Layer Size: 820 (3 past frames and current frame).
2 hidden layers with 1024 units and RelLU activations.
Batch normalization, dropout of 0.1.

LSTM:
2 LSTM layers with 400 and 205 units respectively
Input: 10 time steps (9 past frames and current frame).
A dropout of 0.1 and recurrent dropout of 0.2 is used.

CED:
Input: 6 time steps (5 past frames plus current one)
ELU activation, batch normalization, skip connections.

« Output: 205 units of sigmoid activations with scaling factor of 2.
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Experimental Setup (3/3)

Optimizer Adam
Learning Rate 0.001
Batch Size 32
Convergence/Epochs Early Stopping
Training/ Validation NTT-AT [10] *
Testing NTT-AT*/ TIMIT[11]

*All files were downsampled to 16kHz and a passive mono downmix
was obtained.
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Results (1/6)
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Fig 3: POLQA scores evaluating the performance of the FCNN, LSTM and
CED architectures using the NTT test set (lowest 5 modes of AMR-WB).
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Results (2/6)
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Fig 4: POLQA scores evaluating the performance of the Cepstrum-CNN,
CED and G.718 using the NTT test set (lowest 5 modes of AMR-WB).
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Results (3/6)
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Fig 5: Average MUSHRA scores of 11 listeners at 6.65 kbps.
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Results (4/6)
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Fig 6: Average MUSHRA scores of 11 listeners at 12.65 kbps.
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Results (5/6)
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Fig 7: POLQA scores evaluating the performance of Cepstrum-CNN,
CED and G.718 using the TIMIT test set (lowest 5 modes of AMR-WB).
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Results(6/6)

Network Number of
Architecture Parmaters

FCNN 2,108,621 32 ms
LSTM 1,468,120 32 ms
CED 147,292 32 ms
Cepstrum-CNN 419,805 20 ms

Table 2: Comparison of the number of parameters in different
network architectures.
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Conclusion

« We have proposed convolutional encoder-decoder (CED) based post-filter
for enhancing the perceptual quality of coded speech.

«  Our proposed post-filter makes no assumption of signal or noise
characteristics.

«  The proposed post-filter estimates a real valued mask per time-frequency
bin.

« The post-filter is trained using modified signal approximation (mod-SA)
in order to obtain generalized model.

- The generalized model works well at even higher bitrates inspite of
being trained on lowest bitrate.

* Robustness of our proposed model is proved by cross-database testing.
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