Pan Mu, Jian Chen, Risheng Liu^{*}, Wei Zhong, Xin Fan, Zhongxuan Luo

Dalian University of Technology, Dalian, China

Team web: http://dutmedia.org/

ICASSP 2020

The Proposed DPA Method

4

Applications and Discussion

Conclusions

Problem

Image Restoration via Data-dependent Proximal Averaged Optimization

Model

General MAP Model

 $p(\mathbf{x} | \mathbf{y}) \propto p(\mathbf{y} | \mathbf{x}) p(\mathbf{x})$

Image Restoration via Data-dependent Proximal Averaged Optimization

Model

General MAP Model

 $p(\mathbf{x} | \mathbf{y}) \propto p(\mathbf{y} | \mathbf{x}) p(\mathbf{x})$

Image Restoration via Data-dependent Proximal Averaged Optimization

Model

Image Restoration via Data-dependent Proximal Averaged Optimization

ICASSP 2020

Model

Algorithm

Algorithm 1 Data-dependent Proximal Average Framework **Require:** The input \mathbf{x}^0 , μ^0 , α^0 , parameters $t_k \in (0, 1/L^f)$. 1: while not converged do 2: $\mathbf{u}^k = \mathcal{P}(\mathbf{x}^k, t_k), \qquad \mathcal{P}(\mathbf{x}^k, t_k) \in \arg\min g(\mathbf{x}) + 1/(2t_k) \|\mathbf{x} - (\mathbf{x}^k - t_k \nabla f(\mathbf{x}^k))\|^2,$ 3: $\mathbf{v}^{k} = \mathcal{L}(\mathbf{x}^{k}, \mathcal{D}^{k}, \mu^{k}),$ 4: $\mathbf{z}^{k} = \mathcal{A}(\mathbf{u}^{k}, \mathbf{v}^{k}, \alpha^{k}),$ $\mathcal{L}(\mathbf{x}^{k}, \tilde{\mathbf{x}}^{k}, \mu_{k}) \in \arg\min_{\mathbf{x}} H(\mathbf{x}) + \mu_{k} \|\mathbf{x} - \tilde{\mathbf{x}}^{k}\|^{2}.$ 5: $\mathbf{x}^{k+1} = \mathcal{M}(\mathbf{u}^k, \mathbf{z}^k).$ 6: end while $\mathcal{M}(\mathbf{u}^k, \mathbf{z}^k) = \begin{cases} \mathbf{u}^k, \text{ if } F(\mathbf{u}^k) < F(\mathbf{z}^k), \\ \mathbf{z}^k, \text{ else.} \end{cases}$

> Two Applications

	Deconvolution	Rain Streaks Removal
Task	$\mathbf{y} = \mathbf{k} \otimes \mathbf{x} + \mathbf{n}$	$\mathbf{y} = \mathbf{x} + \mathbf{x}_r$
f	$\ \mathbf{K}\mathbf{x} - \mathbf{y}\ ^2$	$\ \mathbf{x} \!-\! \mathbf{D}^ op oldsymbollpha \ ^2 \!+\! \ \mathbf{x}_r \!-\! \mathbf{D}^ op oldsymboleta \ ^2$
g	$ ho \ \mathbf{W}\mathbf{x}\ _1$	$ ho_1 \ oldsymbol{lpha} \ _1 + ho_2 \ oldsymbol{eta} \ _1$ + $\mathcal{I}_\Omega(\mathbf{x}, \mathbf{x}_r)$
H	$\ \mathbf{k}\otimes\mathbf{x}\!-\!\mathbf{y}\ ^2\!+\!\lambda\ abla\mathbf{x}\ _p$	$\ \mathbf{y} - \mathbf{x} - \mathbf{x}_r\ ^2 + \lambda_1 \ \nabla \mathbf{x}\ _p$

Table 1. Summary of two IR tasks (deconvolution and rain streaks removal) and the functional structures.

Applications and Discussion

Discussion

(1) Illustrate the effectiveness of DPA in image deconvolution task.

Discussion

(2) Theory results

Sufficient Descent Property: $F(\mathbf{x}^{k+1}) \le F(\mathbf{x}^k) - (1/(2t_k) - L^f / 2) || \mathbf{u}^k - \mathbf{x}^k ||^2.$

There exists \mathbf{x}^* be any accumulation of the sequence $\{\mathbf{x}^k\}$ satisfying $0 \in \partial F(\mathbf{x}^*)$. This means the proposed DPA convergence to a critical point of $\min_{\mathbf{x}} F(\mathbf{x})$.

Image deconvolution

Averaged quantitative comparison of image deblurring on Sun et al. benchmark.

Image deconvolution

Image Restoration via Data-dependent Proximal Averaged Optimization

Experiments

Rain streaks removal

Rain12: including 12 synthesized rain images with only one type of rain streaks rendering technique;

Rain1400: generated by 14 rainy images with different streak orientations and magnitudes

Rain100H: collected from BSD200 and synthesized with five streak directions;

Methods	Rain12	Rain1400	Rain100H
Methous	PSNR/SSIM	PSNR/SSIM	PSNR/SSIM
LP	32.33 / 0.90	_/_	14.26 / 0.42
JCAS	31.61 / 0.92	26.80/0.85	15.23 / 0.52
DDN	33.41 / 0.94	29.99 / 0.89	17.93 / 0.57
UGSM	33.30 / 0.93	26.38 / 0.83	14.90/0.47
JORDER	35.93 / 0.95	28.90/0.90	23.45 / 0.75
DID-MDN	29.08 / 0.90	29.84 / 0.90	17.28 / 0.60
Ours	36.39 / 0.96	31.33 / 0.91	24.30 / 0.80

- First, we provide a new insight for solving IR problems.
- Second, the developed model takes advantages of different domain knowledges.
- >>> Third, the propagation of DPA converges to a critical point of the objective.

ICASSP 2020

Thanks