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Continual Learning

� Goal
� Train a DNN on sequence of tasks

� Restriction
� Only data of most recent task available

� Challenges
� Catastrophic forgetting [Fre99]
� Knowledge transfer
� Model size

� Methods
� Regularization [ZPG17, KPR+17]
� Structural [YYLH18]
� Rehearsal [SLKK17, LP+17, vdVT18]
� Bayesian [NLBT18]

Figure: Training on a sequence of tasks
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One-Class Classification

� One-Class Classifier [MH96]
� Distinguish target class vs others
� Within-class generalization
� Between-class generalization
� Out-of-class generalization

� Approaches
� Density based
� Boundary methods
� Reconstruction based

[AC15, XCZ+18, KKH18, SCKC16]

Figure: One-Class Classification example
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Proposed Method

� Basic idea
� Interpret CL as series of OCC problems
� Use generative model to build memory
� Share latent space

� Realization
� VAE for OCC of every class
� Shared encoder
� Generative replay using learned

decoders Figure: Proposed method structure
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Proposed Method

� General formulation using
� Shared encoder Φ
� Class specific decoders Ψ i

� Supervised loss L
� Regularization R against catastrophic forgetting

max
Φ,Ψ1,...ΨM

L(Φ, Ψ 1, . . . ΨM ) + R(Φ) (1)
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Proposed Method

� Formulation using VAE
� Shared encoder Φ
� Class specific decoders Ψ i

� Evidence lower bound (ELBO), i.e. Epx
[EqΦ

[ln pΨ (x|z)] − D(qΦ ‖ pz)]

max
Φ,Ψ1,...ΨM

M
∑

m=1

Epm
x

[EqΦ
[ln pΨm(x|z)] − D(qΦ ‖ pm

z
)]

+
N

∑

n=1

Epn
x

[

EqΦ

[

ln pΨn
s
(x|z)

]

− D(qΦ ‖ pn
z
)
]

(2)
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Proposed Method

� What prior distribution pz to use?
� Commonly a Gaussian is used for VAE
� Each class is assigned one prior pm

z

� Means µm are chosen such that ‖µm − µn‖2 = c ∀ m 6= n

Figure: Prior placement for individual classes
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Data sets

� SplitMNIST
� Based on MNIST: x ∈ R

28×28, y ∈ {0, . . . , 9}
� 60000 training and 10000 test examples
� Split into ten tasks containing only one class

Figure: MNIST examples

� SplitFashionMNIST
� Based on Fashion MNIST: x ∈ R

28×28, y ∈ {0, . . . , 9}
� 60000 training and 10000 test examples
� Split into ten tasks containing only one class

Figure: Fashion MNIST examples
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Architecture & Training

� Shared encoder
� Densely connected
� 400, 300, 200, 100, 10/10 Neurons
� ReLU, linear and softplus activation

� Class specific decoders
� One densely connected layer
� 49 ReLU activated neurons
� Convolutional layers
� 16, 32, 1 filters with 3 × 3 kernel
� ReLU and Sigmoid activation
� Bilinear upsampling after conv. layer

� Optimizer
� RMSprop

� Learning rate
� 0.001

� Batch size
� 128

� Reporting
� Avg. and Std. over ten runs

� Threshold estimation
� On training data only
� γn = µn

ELBO − 6σn
ELBO
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Results
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Figure: Comparison of proposed method for incrementally learning all classes in MNIST and
FashionMNIST data sets with upper bound (UB), lower bound (LB) and base line (BL).
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Results
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Figure: Classification accuracy on seen (splitM-
NIST) and detection of unseen (Fashion-
MNIST) classes during ICL.

Table: Accuracy on data sets after learning all
classes.

Method splitMNIST [%] splitFashionMNIST [%]
SI 19.67 ± 0.29[HLK18] -

EWC 19.80 ± 0.05[HLK18] 15.96 ± 4.86
DGR 91.24 ± 0.33[HLK18] 72.84 ± 3.03
RtF 92.56 ± 0.21[HLK18] 75.21 ± 2.42
Ours 96.39 ± 0.23 79.38 ± 0.69
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Conclusion

� New method for CL based on OCC

� Multi-class classification as series of OCC problems

� CL is enabled through generative replay

� Results competitive on common benchmarks

� Our method detects unknown classes

Thank you for your attention!
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