Mental Fatigue Prediction from Multi-Channel ECoG Signal

Lin Yao¹, Jonathan L. Baker², Jae-Wook Ryou², Nicholas D. Schiff², Keith P. Purpura², <u>Mahsa Shoaran^{1,3}</u>

¹School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14850, USA

²Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA

³EPFL Center for Neuroprosthetics and Institute of Electrical Engineering, 1202 Genève, Switzerland

ICASSP 2020

Outline

- Introduction
- Vigilance Task
 - Experimental Sessions
 - ECoG Data Acquisition
- Neural Biomarkers of Fatigue
- Feature Selection and Classification
- Conclusions

Introduction: Traumatic Brain Injury (TBI)

- Life-long cognitive deficits
 - **3-5 million** in the US
- Currently no effective therapies

Introduction: Traumatic Brain Injury (TBI)

- Life-long cognitive deficits
 - **3-5 million** in the US
- Currently no effective therapies
- Healthy subjects
 - Drop in vigilance during extended tasks with focused attention
- TBI patients: fatigued by even simple cognitive tasks

Introduction: Traumatic Brain Injury (TBI)

- Life-long cognitive deficits
 - **3-5 million** in the US
- Currently no effective therapies
- Healthy subjects
 - Drop in vigilance during extended tasks with focused attention
- TBI patients: fatigued by even simple cognitive tasks
- Deep-brain stimulation (DBS) therapy to restore performance
 - Identify unique biomarkers of cognitive fatigue and drowsiness
 - Activate deep-brain stimulation in a closed loop

Vigilance Task

Two primates perform a variable delay period reaction-time (VDPR) task

Vigilance Task, ECoG Data

- Two primates perform a variable delay period reaction-time (VDPR) task
- Implanted with a 10-channel epidural Electrocorticography (ECoG) array
- Sampling rate of 508.6 Hz
- In total, 129 experimental sessions analyzed (61 for NHP1 and 68 for NHP2)

Vigilance Task, ECoG Data

- Performance gradually decreased over time
- One second segments at the onset of delay period used to classify between correct and incorrect trials
- Due to EOG artifacts, frontal electrodes excluded from the analysis

Neural Biomarkers of Fatigue

Feature	Description
1. Delta	Spectral power in (1-4 Hz)
2. Theta	Spectral power in (4-8 Hz)
3. Alpha	Spectral power in (8-12 Hz)
4. Low Beta	Spectral power in (12-20 Hz)
5. High Beta	Spectral power in (20-30 Hz)
6. Low Gamma	Spectral power in (30–45 Hz)
7. Gamma	Spectral power in (60-90 Hz)
8. High Gamma	Spectral power in (100-200 Hz)
9. Wavelet Entropy	$E = -\sum_{i=1}^{n} p_i \ln(p_i)$; p_i is the
	relative wavelet energy.
10. Hjorth Activity	var(y(t)); y(t): input signal.
11. Hjorth Mobility	$\sqrt{rac{var(rac{dy(t)}{dt})}{var(y(t))}};$ $y(t)$: input signal.
12. Hjorth Complexity	$rac{Mobility(rac{dy(t)}{dt})}{Mobility(y(t))}$

Neural Biomarkers of Fatigue

13. PAC	$\frac{[log(N)-H(P)]}{log(N)}$; N: number of bins dividing the phase, $H(P)$: the Shannon entropy of the amplitude distribution.
14. PDC	$P_{ij} = B_{ij}(f)/\sqrt{b_j^*(f)b_j(f)};$ B : Fourier transform of MVAR model coefficients, b_j : the j th column of B , *: transpose and
15. IAIF	complex conjugate operation. Instantaneous amplitude (IA) over delta band, instantaneous fraguency (IE) over alpha band
16. PLI	frequency (IF) over alpha band, and the ratio of IA and IF. $\frac{1}{T} \sum_{t=1}^{T} e^{j\Delta\theta_t}; \ \theta_t$: the phase difference between two signals at time t, T : the total trial time.

Neural Biomarkers of Fatigue: R² distribution

- The R² distribution across features and electrodes
- Representing the square of Pearson correlation coefficient between a feature and the corresponding label for (a) NHP1, and (b) NHP2

Machine Learning and Feature Selection

- Gradient-boosting decision tree ensemble model (XGB)
 - XGB outperformed classifiers such as linear discriminant analysis (LDA) and support vector machine (SVM)
 - 30 trees with a max depth of 4
 - Unbalanced distribution of correct and incorrect trials: F1 score, as the harmonic mean of sensitivity (TP/(TP+FN)) and precision (TP/(TP+FP))
- A wrapper method used for feature selection
- Performance reported by 5-fold cross-validation

Feature and Channel Importance

- The one-way ANOVA with repeated measures showed a significant difference among the studied features
- IAIF obtains the highest performance in both NHPs

Feature and Channel Importance

Performance with Feature Selection

 High performance achieved by employing less than 10 features per animal, with PDC being the most useful feature

Performance for Each Session

Average F1 score of 75.4%±8.4% and 86.4%±6.6% for NHP1 and NHP2

Conclusions

- Use of modern machine learning techniques to analyze ECoG from two NHPs
- A vigilance task performed over extended periods of time
- Several features identified to robustly predict performance
- Ultimate goal:
 - Real-time prediction of mental fatigue
 - Guide a responsive therapeutic intervention
 - Restore behavioral performance

Thank you!