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Introduction: Traumatic Brain Injury (TBI)

Life-long cognitive deficits
= 3-5 million in the US
Currently no effective therapies

Healthy subjects
= Drop in vigilance during extended tasks with focused attention
TBI patients: fatigued by even simple cognitive tasks

Deep-brain stimulation (DBS) therapy to restore performance
= |dentify unique biomarkers of cognitive fatigue and drowsiness
= Activate deep-brain stimulation in a closed loop



Vigilance Task
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= Two primates perform a variable delay period reaction-time (VDPR) task



Vigilance Task, ECoG Data
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Trial Start Target Cue Delay Period ‘GO Cue’ Reaction Time

Two primates perform a variable delay period reaction-time (VDPR) task

Implanted with a 10-channel epidural Electrocorticography (ECoG) array
Sampling rate of 508.6 Hz

In total, 129 experimental sessions analyzed (61 for NHP1 and 68 for NHP2)



Vigilance Task, ECoG Data
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(c)
= Performance gradually decreased over time
= One second segments at the onset of delay period used to classify between

correct and incorrect trials
= Due to EOG artifacts, frontal electrodes excluded from the analysis



Neural Biomarkers of Fatigue

Feature Description

1. Delta Spectral power in (1-4 Hz)

2. Theta Spectral power in (4-8 Hz)

3. Alpha Spectral power in (8-12 Hz)

4. Low Beta Spectral power in (12-20 Hz)
5. High Beta Spectral power in (20-30 Hz)

6. Low Gamma Spectral power in (3045 Hz)
7. Gamma Spectral power in (60-90 Hz)

8. High Gamma Spectral power in (100-200 Hz)
9. Wavelet Entropy E=->""pin(p;); piis the

10. Hjorth Activity
11. Hjorth Mobility

12. Hjorth Complexity

relative wavelet energy.
var(y(t)); y(t): input signal.

var(——dy(t) ).

~ar(zeyy s Y(¢): input signal.

M obility( ¥4

Mobility(y(t))




Neural Biomarkers of Fatigue

13. PAC [log(ljgg(_Nh)’(P)]; N: number of
bins dividing the phase, H (P):
the Shannon entropy of the am-

plitude distribution.

14. PDC Py = Bij(£)/4/b;(5)bi ()
B: Fourier transform of MVAR
model coefficients, b;: the jth
column of B, *: transpose and
complex conjugate operation.

15. IAIF Instantaneous amplitude (IA)
over delta band, instantaneous
frequency (IF) over alpha band,
and the ratio of IA and IF.

16. PLI LS/ €70 g,: the phase
difference between two signals
at time ¢, 7': the total trial time.




Neural Biomarkers of Fatigue: R? distribution
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= The R? distribution across features and electrodes
= Representing the square of Pearson correlation coefficient between a feature and
the corresponding label for (a) NHP1, and (b) NHP2



Machine Learning and Feature Selection

= Gradient-boosting decision tree ensemble model (XGB)

= XGB outperformed classifiers such as linear discriminant analysis (LDA) and
support vector machine (SVM)
= 30 trees with a max depth of 4

= Unbalanced distribution of correct and incorrect trials: F1 score, as the
harmonic mean of sensitivity (TP/(TP+FN)) and precision (TP/(TP+FP))

= A wrapper method used for feature selection

= Performance reported by 5-fold cross-validation



Feature and Channel Importance
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The one-way ANOVA with repeated measures showed a significant difference
among the studied features

IAIF obtains the highest performance in both NHPs



Feature and Channel Importance
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Performance with Feature Selection
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= High performance achieved by employing less than 10 features per animal, with
PDC being the most useful feature



Performance for Each Session
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= Average F1 score of 75.4%18.4% and 86.4%6.6% for NHP1 and NHP2



Conclusions

Use of modern machine learning techniques to analyze ECoG
from two NHPs

A vigilance task performed over extended periods of time
Several features identified to robustly predict performance

Ultimate goal:
= Real-time prediction of mental fatigue
= Guide a responsive therapeutic intervention
= Restore behavioral performance
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