

Audio Codec Enhancement with Generative Adversarial Networks

ARIJIT BISWAS DAI JIA

Presented at ICASSP 2020

Motivation – I

- Low-bitrate audio coding introduces unavoidable coding artifacts, with significant impact on the quality of:
 - Speech
 - Dense transient events, e.g. applause

- Traditional signal processing-based coded audio restoration tools do exist:
 - Targeted at specific artifacts
 - Require specialized knowledge about codec and its settings
 - Do not provide significant audio quality improvement

Motivation – II

- Deep (conditioned) generative models have opened up exciting opportunities
 - Novel samples created by generative models are suited to restore lost information (e.g. by intelligent gap filling) due to quantization and coding

- Currently generative models for coded audio restoration are based on auto-regressive models (e.g. WaveNet, RNN-based LPCNet)
 - Decoded parameters for conditioning -> not an end-to-end system
 - + Significant quality boost: demonstrated for speech (coded with speech codec)
 - Complex: due to autoregressive nature of the model

Goals

- Backwards compatible improvement of low-bit rate audio codec
- Improve the quality of coded speech and applause signals
- Employ deep generative model
 - End-to-end system: operating directly on decoded audio samples
 - One-shot enhancement

Proposal

Audio Codec Enhancement with Generative Adversarial Networks (GAN)

- First contribution demonstrating:
 - Adversarial framework to enhance coded audio
 - Deep learning based coded applause restoration

© 2020 DOLBY LABORATORI

GAN Training Setup

- Let x be unencoded audio and \tilde{x} be the decoded audio. Goal: x^* is enhanced audio
- For our problem, estimation of \mathbf{x}^* is dependent on $\widetilde{\mathbf{x}}$

Conditional GAN* Training Setup

- Let x be unencoded audio and \tilde{x} be the decoded audio. Goal: x^* is enhanced audio
- For our problem, estimation of \mathbf{x}^* is dependent on $\tilde{\mathbf{x}}$

- Train D with both signals as input: enables D to learn conditional classification task.
- Same principle was also employed in SEGAN** on which our contribution is based on.

2020 DOLBY LABORATORIES, INC.

^{*}P. Isola, et al., "Image-to-Image Translation with Conditional Adversarial Networks," CVPR 2017.

^{**}S. Pascual, et al., "SEGAN: Speech Enhancement Generative Adversarial Network," *Interspeech 2017.*

Deep "Coded Audio Enhancer" (DCAE) Training – Step I (a)

- Let x be unencoded audio and \tilde{x} be the decoded audio. Goal: x^* is enhanced audio
- G is fixed then train D to recognize unencoded audio as real

$$\mathcal{L}_D = \frac{1}{2} \mathbb{E}_{\mathbf{x}, \tilde{\mathbf{x}} \sim p_{data}(\mathbf{x}, \tilde{\mathbf{x}})} [(D(\mathbf{x}, \tilde{\mathbf{x}}) - 1)^2]$$

Deep "Coded Audio Enhancer" (DCAE) Training – Step I (b)

- Let x be unencoded audio and \tilde{x} be the decoded audio. Goal: x^* is enhanced audio
- Keep G fixed: train D to recognize generated audio x^* as fake

$$\mathcal{L}_{D} = \frac{1}{2} \mathbb{E}_{\mathbf{x}, \tilde{\mathbf{x}} \sim p_{data}(\mathbf{x}, \tilde{\mathbf{x}})} [(D(\mathbf{x}, \tilde{\mathbf{x}}) - 1)^{2}] + \frac{1}{2} \mathbb{E}_{\mathbf{z} \sim p_{z}(\mathbf{z}), \tilde{\mathbf{x}} \sim p_{data}(\tilde{\mathbf{x}})} [D(\mathbf{x}^{*}, \tilde{\mathbf{x}})^{2}]$$

10

Deep "Coded Audio Enhancer" (DCAE) Training – Step II

- Let x be unencoded audio and \tilde{x} be the decoded audio. Goal: x^* is enhanced audio
- D is fixed then train G so that D recognizes \mathbf{x}^* as real

11

Audio Codec Enhancement

Generator

Enhanced Audio

- 1D fully convolutional auto-encoder with non-linear activations
 - Bottleneck: c
 - $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ concatenated at bottleneck: adds stochastic behavior to generator predictions
- Skip connections
 - Generated audio maintains fine structure of the coded audio

Listening Test – AAC @ 24 kbit/s Mono (Speech – VCTK Test Set)

Listening Test – AAC @ 32 kbit/s Mono (Speech – VCTK Test Set)

Listening Test – AAC @ 24 kbit/s Mono (Speech – Out-of-Domain Test Set)

DCAE₁₀ is a smaller model

Unencoded Speech

AAC @ 24 kbit/s

Note the spectral gaps

AAC @ 24 kbit/s + DCAE

Note spectro-temporal noise shaping + spectral gap filling

19

Coded Applause Enhancement

 Prepared an in-house applause dataset: includes 4 hours of applause snippets with high perceptual entropy (-> high coding difficulty)

- Tricky to balance transient prominence without making applause signals sound "dry/artificial"
- Solution:
 - Decay λ from early epochs (as soon as GAN training has stabilized)

$$\mathcal{L}_{G} = \frac{1}{2} \mathbb{E}_{\mathbf{z} \sim p_{z}(\mathbf{z}), \tilde{\mathbf{x}} \sim p_{data}(\tilde{\mathbf{x}})} [(D(\mathbf{x}^{*}, \tilde{\mathbf{x}}) - 1)^{2}] + \lambda ||\mathbf{x}^{*} - \mathbf{x}||_{1}$$

• Intuition: incorporate a little bit more stochastic behavior in the generator output to make use of the noise latent z

Listening Test – AAC @ 24 kbit/s Mono (Applause – In-house Test Set)

Unencoded Applause

Section from middle of the "Applaus" excerpt

22

AAC @ 24 kbit/s

Note noise in between transients are slightly amplified and transients are slightly attenuated

AAC @ 24 kbit/s + DCAE₁₀

Model simply performed a transient-to-noise ratio restoration

Transients and noise are very slightly (between 0 and 1 dB) amplified and attenuated, respectively

Conclusions

- Proposed GAN-based coded audio enhancer
- Demonstrated significant quality improvement for coded speech and applause signals
- Provides one-shot enhancement
 - Un-optimized PyTorch implementation of our best performing model for speech and applause runs at 5x and 7x real-time, respectively, on a CPU.

