TU1.L5.1

Spatial Active Noise Control Based on Kernel Interpolation with Directional Weighting

Hayato Ito¹, <u>Shoichi Koyama</u>^{1,2}, Natsuki Ueno¹, and Hiroshi Saruwatari¹

¹The University of Tokyo, ²JST PRESTO

Spatial Active Noise Control

- Spatial active noise control (ANC)
 - Noise cancellation in <u>space</u> with multiple loudspeakers
 - Focused on 2D problem, but can be extended to 3D case

Multipoint pressure control

- > Multipoint pressure control (MPC) in freq domain
 - Reducing noise power at discrete error microphones

- Adaptive filtering technique is used to obtain driving signals of secondary loudspeakers for minimizing $\mathcal{L}_{\mathrm{MPC}}$
- Noise cancellation in the region between error mics is NOT guaranteed owing to point-wise cost funtion

Cost function based on regional noise power

Our strategy to achieve spatial ANC

[Ito+ICASSP 2019]

Cost function based on regional noise power:

$$\mathcal{L} = \int_{\Omega} |u({m r},\omega)|^2 \mathrm{d}{m r}$$

Sound pressure at ${m r} \in \Omega$

- Regional integral of noise power over target region Ω is used as cost function to cancel spatial noise
- Pressure distribution inside Ω must be estimated from signals of error mics \boldsymbol{e} to calculate the cost function \mathcal{L}

Kernel interpolation of sound field

How to estimate $u(\mathbf{r})$ $(\mathbf{r} \in \Omega)$ from $\mathbf{e} \in \mathbb{C}^M$?

 \succ Kernel ridge regression of $u({m r})$ Regularization term in ${\cal H}$

$$\underset{u \in \mathcal{H}}{\operatorname{minimize}} \sum_{m=1}^{M} |u(\boldsymbol{r}_m) - e_m|^2 + \lambda ||u||_{\mathcal{H}}^2$$
Position of m th error mic

$$\hat{u}(\boldsymbol{r}) = \begin{pmatrix} (\boldsymbol{K} + \lambda \boldsymbol{I})^{-1} \boldsymbol{e} \end{pmatrix}^\mathsf{T} \boldsymbol{\kappa}(\boldsymbol{r})$$

$$\begin{bmatrix} \boldsymbol{\kappa}(\boldsymbol{r}_1, \boldsymbol{r}_1) & \cdots & \kappa(\boldsymbol{r}_1, \boldsymbol{r}_M) \\ \vdots & \ddots & \vdots \\ \kappa(\boldsymbol{r}_M, \boldsymbol{r}_1) & \cdots & \kappa(\boldsymbol{r}_M, \boldsymbol{r}_M) \end{bmatrix} : \mathsf{Gram\ matrix}$$

$$\boldsymbol{\kappa}(\boldsymbol{r}) = \begin{bmatrix} \kappa(\boldsymbol{r}, \boldsymbol{r}_1) & \cdots & \kappa(\boldsymbol{r}, \boldsymbol{r}_M) \end{bmatrix}^\mathsf{T}$$

$$\mathsf{Kernel\ function\ of\ } \mathcal{H}$$

Kernel interpolation of sound field

How to estimate $u(\mathbf{r})$ $(\mathbf{r} \in \Omega)$ from $\mathbf{e} \in \mathbb{C}^M$?

 \triangleright Under the assumption that possible noise source direction is uniform, kernel function $\kappa(\mathbf{r}, \mathbf{r}_m)$ should be 0th-order Bessel function in 2D case:

Wave number
$$(k=\omega/c)$$
 $\kappa(m{r},m{r}_m)=J_0(k\|m{r}-m{r}_m\|)$ [Ito+ ICASSP 2019]

- Function interpolation with the constraint that $u({m r})$ satisfies Helmholtz equation [Ueno+ IWAENC 2018]
- ➤ Correspond to sound field analysis based on spherical harmonic decomposition of infinite-order [Ueno+ IEEE SPL 2018]

Effective sound field interpolation method when noise signal possibly comes from all directions

Idea

- Use of prior knowledge on approximate direction of primary noise sources
 - In some practical applications, approximate direction of noise sources can be given in advance
 - Propose <u>spatial ANC based on kernel interpolation with</u> <u>directional weighting</u> to take the prior knowledge into consideration

Reproducing kernel for directional weighting

Kernel function is defined as

 $\kappa(\boldsymbol{r}_1,\boldsymbol{r}_2) = \frac{1}{2\pi} \int_S \underline{w(\boldsymbol{\eta})} e^{\mathrm{j}\boldsymbol{k}^\mathsf{T}(\boldsymbol{r}_1-\boldsymbol{r}_2)} \mathrm{d}\boldsymbol{\eta}$ Directional weighting function

- $w(\eta)$ corresponds to <u>directional weighting of regularization</u> term.
- The smaller the weighting function is, the larger the regularization term becomes.
- Weighting function in prior arrival direction should be set larger than the other directions.

Reproducing kernel for directional weighting

Weighting function is defined as

$$w(\boldsymbol{\eta}) = e^{\beta \cos(\theta - \phi)}$$

 θ : Angle of direction η

 ϕ : Approximate direction of noise source

 β : Constant shape parameter

Reproducing kernel for directional weighting

Kernel function is derived as

$$\kappa(\boldsymbol{r}_1, \boldsymbol{r}_2) = J_0 \left(\mathrm{j} \left[(\beta \cos \phi - \mathrm{j} k x_{12})^2 + (\beta \sin \phi - \mathrm{j} k y_{12})^2 \right]^{\frac{1}{2}} \right)$$
where $(x_{12}, y_{12})^\mathsf{T} := \boldsymbol{r}_1 - \boldsymbol{r}_2$

– When
$$w(\boldsymbol{\eta})=1$$
 $(\beta=0)$, $\kappa(\boldsymbol{r}_1,\boldsymbol{r}_2)=J_0\left(k\|\boldsymbol{r}_1-\boldsymbol{r}_2\|\right)$

Kernel ridge regression by replacing kernel function

$$\hat{u}(\boldsymbol{r}) = ((\boldsymbol{K} + \lambda \boldsymbol{I})^{-1} \boldsymbol{e})^{\mathsf{T}} \boldsymbol{\kappa}(\boldsymbol{r})$$

$$egin{aligned} oldsymbol{K} &= egin{bmatrix} \kappa(oldsymbol{r}_1, oldsymbol{r}_1) & \cdots & \kappa(oldsymbol{r}_1, oldsymbol{r}_M) \ dots & \ddots & dots \ \kappa(oldsymbol{r}_M, oldsymbol{r}_1) & \cdots & \kappa(oldsymbol{r}_M, oldsymbol{r}_M) \end{bmatrix}^{\mathsf{T}} \end{aligned}$$

$$oldsymbol{\kappa}(oldsymbol{r}) = egin{bmatrix} \kappa(oldsymbol{r}, oldsymbol{r}_1) & \cdots & \kappa(oldsymbol{r}, oldsymbol{r}_M) \end{bmatrix}^\mathsf{T}$$

Cost function based on regional noise power

Cost function based on regional noise power

$$\mathcal{L} = \int_{\Omega} |\hat{u}(\boldsymbol{r})|^2 d\boldsymbol{r} = \boldsymbol{e}^{\mathsf{H}} \boldsymbol{A} \boldsymbol{e}$$

$$\begin{cases} \boldsymbol{A} = \boldsymbol{P}^{\mathsf{H}} \left(\int_{\Omega} \boldsymbol{\kappa}(\boldsymbol{r}^*) \boldsymbol{\kappa}(\boldsymbol{r})^{\mathsf{T}} d\boldsymbol{r} \right) \boldsymbol{P} \\ \boldsymbol{P} = \left(\boldsymbol{K} + \lambda \boldsymbol{I} \right)^{-1} \end{cases}$$

- Cost function becomes signal power of error mics with weighting matrix A that can be calcuated in advance.
- Difference from the cost function of MPC is only in A,
 which means various types of adaptive filtering algorithms
 can be applied with the same computational cost.

Feedback spatial ANC

> Focusing on simple feedback ANC for stationary noise

Weighted NLMS for updating driving signals

$$\boldsymbol{d}(n+1) = \boldsymbol{d}(n) - \frac{\mu_0}{\|\boldsymbol{G}^{\mathsf{H}}\boldsymbol{A}\boldsymbol{G}\| + \epsilon} \boldsymbol{G}^{\mathsf{H}}\boldsymbol{A}\boldsymbol{e}(n)$$
 Regularization parameter

Experimental setting

Performace of feedback spatial ANC

- 2D free-field simulation in freq domain
- Comparing proposed method and MPC
- Target region is inside circle with radius of 0.5 m

Secondary loudspeakers:

12 point sources on circle with radius of
 1.0 m

> Error mics:

 18 omni-directional mics distributed around circle with radius of 0.5 m

Primary noise source:

Single point source

Parameter setting:

- Parameter of weighting function is set as β=0 or 2
- $-\beta=0$ corresponds to uniform weighting

Performance measure

> Regional noise power reduction

Total pressure field at i th evaluation point \boldsymbol{r}_i for n th iteration

$$P_{\text{red}} = 10 \log_{10} \frac{\sum_{i} |u^{(n)}(\boldsymbol{r}_{i})|^{2}}{\sum_{i} |u^{(0)}(\boldsymbol{r}_{i})|^{2}}$$

Original pressure field generated by primary noise source

- Evaluation points were obtained by discretizing $\,\Omega$ at intervals of 0.02 m.
- Smaller $P_{\rm red}$ means better performance.

Results

- > Power distribution after 500 iterations at 280Hz
 - Primary noise source at (10.0 m, 180 deg)

Results

- ightharpoonup Average $P_{\rm red}$ of 100 trials (after 500 iterations) when position of noise source was randomly shifted
 - Standard deviation in radial and angular directions are 0.04 m and 3.0 deg

Conclusion

- Spatial ANC based on kernel interpolation with directional weighting
 - Cost function formulated with regional error power
 - Kernel interpolation of sound field with error mic signals
 - Approximate direction of primary noise source is used as prior knowledge
 - Computational cost of proposed weighted NLMS is equivalent to that of conventional MPC
 - Better performance even when prior noise source direction is slightly different from true direction