Effective Approximation of Bandlimited Signals and Their Samples

Holger Boche^{1,2} and Ullrich J. Mönich¹

¹ Technical University of Munich, Chair of Theoretical Information Technology ²Munich Center for Quantum Science and Technology (MCQST)

IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP2020)

Motivation

Shannon's sampling theorem links the continuous-time and discrete-time worlds.

- When applying sampling or interpolation, many properties and characteristics of the signal carry over from one domain into the other (e.g., energy in discrete-time = energy in continuous-time).
- We analyze if and how this transition affects the computability of the signal.
- In many applications digital hardware is used (CPUs, FPGAs, etc.).
- Computability of a signal is directly linked to the approximation with "simple" signals, where we have an "effective"/algorithmic control of the approximation error.
- If a signal is not computable, we cannot control the approximation error.

We study bandlimited signals $\mathsf{f}\in\mathcal{B}_{\pi}^{\mathfrak{p}}$ with finite $\mathsf{L}^{\mathfrak{p}}$ -norm. Computability continuous-time ⇔ ? computability discrete-time

Turing Machine

Turing Machine:

Abstract device that manipulates symbols on a strip of tape according to certain rules.

- Turing machines are an idealized computing model.
- No limitations on computing time or memory, no computation errors.
- Although the concept is very simple, Turing machines are capable of simulating any given algorithm.

Turing machines are suited to study the limitations of a digital computer:

Anything that is not Turing computable cannot be computed on a real digital computer, regardless how powerful it may be.

- A. M. Turing, "On computable numbers, with an application to the Entscheidungsproblem," *Proceedings of the London Mathematical Society*, R vol. s2-42, no. 1, pp. 230–265, Nov. 1936
- A. M. Turing, "On computable numbers, with an application to the Entscheidungsproblem. A correction," *Proceedings of the London Mathe-*R *matical Society*, vol. s2-43, no. 1, pp. 544–546, Jan. 1937
- c_0 : space of all sequences that vanish at infinity
- $\ell^p(\mathbb{Z}), 1 \leq p < \infty$: spaces of p-th power summable sequences $x = \{x(k)\}_{k \in \mathbb{Z}}$ Norm: $\|x\|_{\ell^p} = (\sum_{k=-\infty}^{\infty} |x(k)|^p)^{1/p}$
- $L^p(\Omega)$, $1 \leq p < \infty$: space of all measurable, pth-power Lebesgue integrable functions on Ω Norm: $||f||_p = (\int_{\Omega} |f(t)|^p dt)^{1/p}$
- L[∞](Ω): space of all functions for which the essential supremum norm $\|\cdot\|_{\infty}$ is finite

Definition (Bernstein Space)

Let B_{σ} be the set of all entire functions f with the property that for all $\epsilon > 0$ there exists a constant $C(\epsilon)$ with $|f(z)| \leqslant C(\epsilon) \exp((\sigma + \epsilon)|z|)$ for all $z \in \mathbb{C}$.

The Bernstein space \mathcal{B}^p_σ consists of all functions in \mathcal{B}_σ , whose restriction to the real line is in $\mathsf{L}^p(\mathbb{R}),$ $1 \leq p \leq \infty$. The norm for \mathcal{B}^p_{σ} is given by the L^p-norm on the real line.

- A function in $\mathcal{B}_{\sigma}^{\mathfrak{p}}$ is called bandlimited to σ .
- We have $\mathcal{B}_{\sigma}^{\mathcal{p}} \subset \mathcal{B}_{\sigma}^{\mathcal{r}}$ for all $1 \leqslant \mathcal{p} \leqslant \mathcal{r} \leqslant \infty$.
- $\mathcal{B}^{\infty}_{\sigma,0}$: space of all functions in $\mathcal{B}^{\infty}_{\sigma}$ that vanish at infinity.
- \mathcal{B}_{σ}^2 : space of bandlimited functions with finite energy.

A sequence of rational numbers $\{r_n\}_{n\in\mathbb{N}}$ is called computable sequence if there exist recursive functions a, b, s from N to N such that $b(n) \neq 0$ for all $n \in \mathbb{N}$ and

$$
r_n = (-1)^{s(n)} \frac{\mathfrak{a}(n)}{\mathfrak{b}(n)}, \qquad n \in \mathbb{N}.
$$

• A recursive function is a function, mapping natural numbers into natural numbers, that is built of simple computable functions and recursions. Recursive functions are computable by a Turing machine.

First example of an effective approximation

A real number x is said to be computable if there exists a computable sequence of rational numbers ${r_n}_{n\in\mathbb{N}}$ and a recursive function $\xi: \mathbb{N} \to \mathbb{N}$ such that for all $M \in \mathbb{N}$ we have

$$
|x-r_{\rm n}|<2^{-M}
$$

for all $n \geq \xi(M)$.

- \mathbb{R}_c : set of computable real numbers
- \bullet \mathbb{R}_c is a field, i.e., finite sums, differences, products, and quotients of computable numbers are computable.
- Commonly used constants like e and π are computable.

Computability in Banach spaces: Effective approximation by "simple" elements

A sequence $x = {x(k)}_{k \in \mathbb{Z}}$ in ℓ^p , $p \in [1, \infty) \cap \mathbb{R}_c$ is called computable in ℓ^p if every number $x(k)$, $k \in \mathbb{Z}$ is computable and there exist a computable converge $\{y_k\}_{k \in \mathbb{Z}}$ is computable and ther $k\in \mathbb Z$, is computable and there exist a computable sequence $\{y_n\}_{n\in \mathbb N}\subset \ell^p$, where each y_n has only finitely many non-zero elements, all of which are computable as real numbers, and a recursive function $\xi: \mathbb{N} \to \mathbb{N}$, such that for all $M \in \mathbb{N}$ we have

$$
\|x-y_n\|_{\ell^p}\leqslant 2^{-M}
$$

for all $n \geq \xi(M)$.

- Effective approximation by simple / finite-length sequences
- $\mathcal{C} \ell^p$: set of all sequences that are computable in ℓ^p
- $\mathcal{C}c_0$: set of all sequences that are computable in c_0

We call a function f elementary computable if there exists a natural number L and a sequence of computable numbers $\{\alpha_{\rm k}\}_{\rm k=-L}^{\rm L}$ such that

$$
f(t) = \sum_{k=-L}^{L} \alpha_k \frac{\sin(\pi(t-k))}{\pi(t-k)}.
$$

- Every elementary computable function is Turing computable.
- For every elementary computable function f, the norm $\|f\|_{\mathcal{B}^p_\pi}$ is computable.

Computable Bandlimited Functions II

A function in $f \in \mathcal{B}_{\pi}^p$, $1 \leq p < \infty$, is called computable in \mathcal{B}_{π}^p if there exists a computable sequence of elementary computable functions ${f_n}_{n\in\mathbb{N}}$ and a recursive function ξ: $\mathbb{N} \to \mathbb{N}$ such that for all $M \in \mathbb{N}$ we have

$$
\|f-f_n\|_p\leqslant 2^{-M}
$$

for all $n \geq \xi(M)$.

- \mathcal{CB}_{π}^{p} : set of all functions that are computable in \mathcal{B}_{π}^{p} .
- $\mathcal{CB}_{\pi,0}^{\infty}$: set of all functions that are computable in $\mathcal{B}_{\pi,0}^{\infty}$ (analog definition).

Computable Bandlimited Functions II

A function in $f \in \mathcal{B}_{\pi}^p$, $1 \leq p < \infty$, is called computable in \mathcal{B}_{π}^p if there exists a computable sequence of elementary computable functions ${f_n}_{n\in\mathbb{N}}$ and a recursive function ξ: $\mathbb{N} \to \mathbb{N}$ such that for all $M \in \mathbb{N}$ we have −M

$$
\|f-f_n\|_p\leqslant 2^{-\Lambda}
$$

for all $n \geq \xi(M)$.

- \mathcal{CB}_{π}^{p} : set of all functions that are computable in \mathcal{B}_{π}^{p} .
- $\mathcal{CB}_{\pi,0}^{\infty}$: set of all functions that are computable in $\mathcal{B}_{\pi,0}^{\infty}$ (analog definition).

We can approximate every function $f \in \mathcal{CB}_{\pi}^p$ by an elementary computable function, where we have an effective control of the approximation error.

Computable Bandlimited Functions III

For $f \in \mathbb{CB}_{\pi}^p$, $p \in [1, \infty) \cap \mathbb{R}_c$ and all $M \in \mathbb{N}$ we have

$$
||f - f_n||_{\infty} \leq (1 + \pi) ||f - f_n||_p \leq \frac{1 + \pi}{2^M}
$$

for all $n \geq \xi(M)$.

We can approximate any function $f \in \mathcal{CB}_{\pi}^{\bar{p}}$ by an elementary computable function, where we have an effective and uniform control of the approximation error.

Observation

Let $f \in \mathcal{CB}_{\pi, p}^p$, $p \in [1, \infty) \cap \mathbb{R}_c$, or $f \in \mathcal{CB}_{\pi, p}^{\infty}$ Then $f|_Z = {f(k)}_{k \in \mathbb{N}}$ is a computable sequence of computable numbers. Further we have $f|_{\mathbb{Z}} \in \mathcal{C}\ell^p$ if $p \in [1, \infty) \cap \mathbb{R}_c$, and $f|_{\mathbb{Z}} \in \mathcal{C}c_0$ if $p = \infty$.

Continuous-time signal f computable \Rightarrow Discrete-time signal f| π computable

Continuous-time signal f computable $\stackrel{\text{.}}{=}$ Discrete-time signal f $|z|$ computable ?

Continuous-time signal f computable \bigtimes Discrete-time signal f| $_\mathbb{Z}$ computable

Continuous-time signal f computable \bigtimes Discrete-time signal f| $_\mathbb{Z}$ computable

Question 1:

Is there a simple necessary and sufficient condition for characterizing the computability of f?

Continuous-time signal f computable \bigtimes Discrete-time signal f| $_\mathbb{Z}$ computable

Question 1:

Is there a simple necessary and sufficient condition for characterizing the computability of f?

Question 2:

Is there a simple canonical algorithm to actually compute f from the samples $f|_Z$?

Theorem

Let $f \in \mathcal{B}^p_\pi$, $p \in (1,\infty) \cap \mathbb{R}_c$. Then we have $f \in \mathcal{CB}^p_\pi$ *if and only if* $f|_{\mathbb{Z}} \in \mathcal{CF}$.

- For $p \in (1,\infty) \cap \mathbb{R}_c$, the computability of the discrete-time signal implies the computability of the continuous-time signal.
- This answers Question 1.

Theorem

Let $f \in \mathcal{B}^p_\pi$, $p \in (1,\infty) \cap \mathbb{R}_c$. Then we have $f \in \mathcal{CB}^p_\pi$ *if and only if* $f|_{\mathbb{Z}} \in \mathcal{CF}$.

- For $p \in (1,\infty) \cap \mathbb{R}_c$, the computability of the discrete-time signal implies the computability of the continuous-time signal.
- This answers Question 1

For $p \in (1,\infty) \cap \mathbb{R}_c$ we have: f computable $\Leftrightarrow f|_{\mathbb{Z}}$ computable

That is we have a correspondence between the computable discrete-time signals in $\mathcal{C}\ell^p$ and the computable continuous-time signals in $\mathcal{CB}_{\pi}^{\mathfrak{p}}$.

For $p = 1$ we do not have the correspondence. There exist signals that are in $\mathcal{C}\ell^1$ (computable in discrete-time), where the corresponding continuous-time signal is not in $\mathbb{C}\mathbb{B}^1_\pi.$

Example:

- $f_1(t) = \frac{\sin(\pi t)}{\pi t}$, $t \in \mathbb{R}$.
- f₁ is a function of exponential type at most π and we have $f_1|_{\mathbb{Z}} \in \mathcal{C}\ell^1$.
- However, $f_1 \notin \mathcal{CB}_{\pi}^1$, because $f_1 \notin \mathcal{B}_{\pi}^1$.

For $p = \infty$ we also do not have the correspondence.

Theorem

There exists a $f_2 \in B^{\infty}_{\pi,0}$ *such that* $f_2|_{\mathbb{Z}} \in \mathbb{C}c_0$ *and* $f_2 \notin \mathbb{C}B^{\infty}_{\pi,0}$ *. (We even have* $f_2(t) \notin \mathbb{C}_c$ *for all* $t \in \mathbb{R}_c \setminus \mathbb{Z}$ *).*

Theorem

Let $f \in \mathcal{B}_{\pi}^{\mathbf{p}}, \, p \in (1, \infty) \cap \mathbb{R}_{\mathbf{c}}$. We have $f \in \mathcal{CB}_{\pi}^{\mathbf{p}}$ *if and only if*

- \bigoplus f| $\mathbb Z$ *is a computable sequence of computable numbers,*
- \bullet ||f|z||_{ℓ} $\in \mathbb{R}_c$.
- We do not require that the sequence $f|_Z$ is computable in ℓ^p , but only that the number $||f|_Z||_{\ell^p}$ is computable.

An Answer to Question 2

Shannon sampling series

$$
(S_Nf)(t)=\sum_{k=-N}^N f(k)\frac{\sin(\pi(t-k))}{\pi(t-k)},\quad t\in\mathbb{R}.
$$

Theorem

Let $p \in (1, ∞) ∩ ℝ_c$ *and* $f ∈ B^p_r$. Then we have $f ∈ CB^p_r$ *if and only if* $f|z$ *is a computable sequence* of computable numbers and $S_N f$ converges effectively to f in the LP-norm as N tends to infinity.

• The Shannon sampling series provides a remarkably simple algorithm to construct a computable sequence of elementary computable functions in \mathcal{CB}_{π}^p that converges effectively to f.

• For $p = 1$ and $p = \infty$ the Shannon sampling series cannot be used for this purpose.

Theorem

There exists a signal $f_3 \in \mathbb{C} \mathbb{B}^1_\pi$ *such that* $S_1 f_3 \notin \mathbb{C} \mathbb{B}^1_\pi$ *, because* $S_1 f_3 \notin \mathbb{B}^1_\pi$ *.*

Theorem

There exists a signal $f_4 \in \mathbb{C}\mathbb{B}^{\infty}_{\pi,0}$ such that $\{S_N f_4\}_{N \in \mathbb{N}}$ does not converge effectively to f_4 in the L ∞*-norm.*

- We studied the effective (i.e., computable) approximation of bandlimited signals $(\rightarrow$ algorithmic control of the approximation error).
- We gave a necessary and sufficient condition for computability.
- For $p \in (1,\infty) \cap \mathbb{R}_c$ we have:
	- 1) f computable \Leftrightarrow f|z computable,
	- 2) Shannon sampling series provides a simple algorithm for the effective approximation of f.
- For $p = 1$ and $p = \infty$ we have no correspondence.

Thank you!