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Motivation

Shannon’s sampling theorem links the continuous-time and discrete-time worlds.

Sampling

InterpolationContinuous-time signal Discrete-time signal

• When applying sampling or interpolation, many properties and characteristics of the signal carry
over from one domain into the other (e.g., energy in discrete-time = energy in continuous-time).

• We analyze if and how this transition affects the computability of the signal.
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Why Study the Computability of a Signal?

• In many applications digital hardware is used (CPUs, FPGAs, etc.).
• Computability of a signal is directly linked to the approximation with “simple” signals, where we

have an “effective”/algorithmic control of the approximation error.
• If a signal is not computable, we cannot control the approximation error.
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Overview of the Results

We study bandlimited signals f ∈ B
p
π with finite Lp-norm.

Computability continuous-time ⇔
?

computability discrete-time

p ∈ (1,∞) p = 1 or p = ∞
X Correspondence

Algorithm: Shannon sampling series

Control of the approximation error

x No correspondence

No algorithm exists

No control of the approximation error
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Turing Machine
Turing Machine:
Abstract device that manipulates symbols on a strip of tape according to certain rules.

• Turing machines are an idealized computing model.
• No limitations on computing time or memory, no computation errors.
• Although the concept is very simple, Turing machines are capable of simulating any given

algorithm.

Turing machines are suited to study the limitations of a digital computer:

Anything that is not Turing computable cannot be computed on a real digital computer, regard-
less how powerful it may be.

A. M. Turing, “On computable numbers, with an application to the Entscheidungsproblem,” Proceedings of the London Mathematical Society,
vol. s2-42, no. 1, pp. 230–265, Nov. 1936
A. M. Turing, “On computable numbers, with an application to the Entscheidungsproblem. A correction,” Proceedings of the London Mathe-
matical Society, vol. s2-43, no. 1, pp. 544–546, Jan. 1937
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Notation

• c0: space of all sequences that vanish at infinity
• `p(Z), 1 6 p <∞: spaces of p-th power summable sequences x = {x(k)}k∈Z

Norm: ‖x‖`p = (
∑∞
k=−∞|x(k)|p)1/p

• Lp(Ω), 1 6 p <∞: space of all measurable, pth-power Lebesgue integrable functions on Ω
Norm: ‖f‖p =

(∫
Ω|f(t)|p dt

)1/p

• L∞(Ω): space of all functions for which the essential supremum norm ‖ · ‖∞ is finite
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Bandlimited Functions

Definition (Bernstein Space)
Let Bσ be the set of all entire functions f with the property that for all ε > 0 there exists a constant
C(ε) with |f(z)| 6 C(ε) exp

(
(σ+ ε)|z|

)
for all z ∈ C.

The Bernstein space B
p
σ consists of all functions in Bσ, whose restriction to the real line is in Lp(R),

1 6 p 6 ∞. The norm for Bpσ is given by the Lp-norm on the real line.

• A function in B
p
σ is called bandlimited to σ.

• We have B
p
σ ⊂ Brσ for all 1 6 p 6 r 6 ∞.

• B∞
σ,0: space of all functions in B∞

σ that vanish at infinity.

• B2
σ: space of bandlimited functions with finite energy.
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Computable Sequences of Rationals

A sequence of rational numbers {rn}n∈N is called computable sequence if there exist recursive
functions a,b, s from N to N such that b(n) 6= 0 for all n ∈ N and

rn = (−1)s(n)
a(n)

b(n)
, n ∈ N.

• A recursive function is a function, mapping natural numbers into natural numbers, that is built of
simple computable functions and recursions. Recursive functions are computable by a Turing
machine.
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Computable Real Numbers

First example of an effective approximation

A real number x is said to be computable if there exists a computable sequence of rational numbers
{rn}n∈N and a recursive function ξ : N→ N such that for all M ∈ N we have

|x− rn| < 2−M

for all n > ξ(M).

• Rc: set of computable real numbers
• Rc is a field, i.e., finite sums, differences, products, and quotients of computable numbers are

computable.
• Commonly used constants like e and π are computable.
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Computability in `p

Computability in Banach spaces: Effective approximation by “simple” elements

A sequence x = {x(k)}k∈Z in `p, p ∈ [1,∞) ∩ Rc is called computable in `p if every number x(k),
k ∈ Z, is computable and there exist a computable sequence {yn}n∈N ⊂ `p, where each yn has only
finitely many non-zero elements, all of which are computable as real numbers, and a recursive
function ξ : N→ N, such that for all M ∈ N we have

‖x− yn‖`p 6 2−M

for all n > ξ(M).

• Effective approximation by simple / finite-length sequences
• C`p: set of all sequences that are computable in `p

• Cc0: set of all sequences that are computable in c0
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Computable Bandlimited Functions I

We call a function f elementary computable if there exists a natural number L and a sequence of
computable numbers {αk}

L
k=−L such that

f(t) =

L∑
k=−L

αk
sin(π(t− k))
π(t− k)

.

• Every elementary computable function is Turing computable.
• For every elementary computable function f, the norm ‖f‖Bpπ is computable.
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Computable Bandlimited Functions II

A function in f ∈ B
p
π, 1 6 p <∞, is called computable in B

p
π if there exists a computable sequence

of elementary computable functions {fn}n∈N and a recursive function ξ : N→ N such that for all
M ∈ N we have

‖f− fn‖p 6 2−M

for all n > ξ(M).

• CB
p
π: set of all functions that are computable in B

p
π.

• CB∞
π,0: set of all functions that are computable in B∞

π,0 (analog definition).

We can approximate every function f ∈ CB
p
π by an elementary computable function, where we

have an effective control of the approximation error.
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Computable Bandlimited Functions III

For f ∈ CB
p
π, p ∈ [1,∞) ∩ Rc and all M ∈ N we have

‖f− fn‖∞ 6 (1 + π)‖f− fn‖p 6
1 + π

2M

for all n > ξ(M).

We can approximate any function
f ∈ CB

p
π by an elementary computable

function, where we have an effective
and uniform control of the approximation
error.
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Observation

Observation

Let f ∈ CB
p
π, p ∈ [1,∞) ∩ Rc, or f ∈ CB∞

π,0.
Then f|Z = {f(k)}k∈N is a computable sequence of computable numbers.
Further we have f|Z ∈ C`p if p ∈ [1,∞) ∩ Rc, and f|Z ∈ Cc0 if p = ∞.

Continuous-time signal f computable ⇒ Discrete-time signal f|Z computable
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Two Questions

Given a computable discrete-time signal, is the corresponding continuous-time signal computable?

Continuous-time signal f computable⇐ Discrete-time signal f|Z computable
?

Question 1:
Is there a simple necessary and sufficient condition for characterizing the computability of f?

Question 2:
Is there a simple canonical algorithm to actually compute f from the samples f|Z?
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A Necessary and Sufficient Condition

Theorem

Let f ∈ B
p
π, p ∈ (1,∞) ∩ Rc. Then we have f ∈ CB

p
π if and only if f|Z ∈ C`p.

• For p ∈ (1,∞) ∩ Rc, the computability of the discrete-time signal implies the computability of the
continuous-time signal.

• This answers Question 1.

For p ∈ (1,∞) ∩ Rc we have: f computable ⇔ f|Z computable

That is we have a correspondence between the computable discrete-time signals in C`p and the
computable continuous-time signals in CB

p
π.
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No correspondence for p = 1

For p = 1 we do not have the correspondence. There exist signals that are in C`1 (computable
in discrete-time), where the corresponding continuous-time signal is not in CB1

π.

Example:
• f1(t) = sin(πt)/(πt), t ∈ R.
• f1 is a function of exponential type at most π and we have f1|Z ∈ C`1.
• However, f1 6∈ CB1

π, because f1 6∈ B1
π.
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No correspondence for p = ∞

For p = ∞ we also do not have the correspondence.

Theorem

There exists a f2 ∈ B∞
π,0 such that f2|Z ∈ Cc0 and f2 6∈ CB∞

π,0.
(We even have f2(t) 6∈ Cc for all t ∈ Rc \ Z).
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A Further Necessary and Sufficient Condition

Theorem

Let f ∈ B
p
π, p ∈ (1,∞) ∩ Rc. We have f ∈ CB

p
π if and only if

1 f|Z is a computable sequence of computable numbers,

2 ‖f|Z‖`p ∈ Rc.

• We do not require that the sequence f|Z is computable in `p, but only that the number ‖f|Z‖`p is
computable.
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An Answer to Question 2

Shannon sampling series

(SNf)(t) =

N∑
k=−N

f(k)
sin(π(t− k))
π(t− k)

, t ∈ R.

Theorem

Let p ∈ (1,∞) ∩ Rc and f ∈ B
p
π. Then we have f ∈ CB

p
π if and only if f|Z is a computable sequence

of computable numbers and SNf converges effectively to f in the Lp-norm as N tends to infinity.

• The Shannon sampling series provides a remarkably simple algorithm to construct a computable
sequence of elementary computable functions in CB

p
π that converges effectively to f.
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Behavior for p = 1 and p = ∞
• For p = 1 and p = ∞ the Shannon sampling series cannot be used for this purpose.

Theorem

There exists a signal f3 ∈ CB1
π such that S1f3 6∈ CB1

π, because S1f3 6∈ B1
π.

Theorem

There exists a signal f4 ∈ CB∞
π,0 such that {SNf4}N∈N does not converge effectively to f4 in the

L∞-norm.
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Conclusions

• We studied the effective (i.e., computable) approximation of bandlimited signals
(→ algorithmic control of the approximation error).

• We gave a necessary and sufficient condition for computability.
• For p ∈ (1,∞) ∩ Rc we have:

1) f computable⇔ f|Z computable,
2) Shannon sampling series provides a simple algorithm for the effective approximation of f.

• For p = 1 and p = ∞ we have no correspondence.
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Thank you!
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