Effective Approximation of Bandlimited Signals and Their Samples

Holger Boche^{1,2} and <u>Ullrich J. Mönich¹</u>

¹Technical University of Munich, Chair of Theoretical Information Technology ²Munich Center for Quantum Science and Technology (MCQST)

IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP2020)

Motivation

Shannon's sampling theorem links the continuous-time and discrete-time worlds.

- When applying sampling or interpolation, many properties and characteristics of the signal carry over from one domain into the other (e.g., energy in discrete-time = energy in continuous-time).
- We analyze if and how this transition affects the computability of the signal.

- In many applications digital hardware is used (CPUs, FPGAs, etc.).
- Computability of a signal is directly linked to the approximation with "simple" signals, where we
 have an "effective"/algorithmic control of the approximation error.
- If a signal is not computable, we cannot control the approximation error.

We study bandlimited signals $f \in \mathcal{B}^p_{\pi}$ with finite L^p-norm. Computability continuous-time \Leftrightarrow computability discrete-time

$\mathfrak{p}\in(1,\infty)$	$p = 1 \text{ or } p = \infty$
✓ Correspondence	x No correspondence
Algorithm: Shannon sampling series	No algorithm exists
Control of the approximation error	No control of the approximation error

Turing Machine

Turing Machine:

Abstract device that manipulates symbols on a strip of tape according to certain rules.

- Turing machines are an idealized computing model.
- No limitations on computing time or memory, no computation errors.
- Although the concept is very simple, Turing machines are capable of simulating any given algorithm.

Turing machines are suited to study the limitations of a digital computer:

Anything that is not Turing computable cannot be computed on a real digital computer, regardless how powerful it may be.

A. M. Turing, "On computable numbers, with an application to the Entscheidungsproblem," *Proceedings of the London Mathematical Society*, vol. s2-42, no. 1, pp. 230–265, Nov. 1936

A. M. Turing, "On computable numbers, with an application to the Entscheidungsproblem. A correction," *Proceedings of the London Mathematical Society*, vol. s2-43, no. 1, pp. 544–546, Jan. 1937

- c₀: space of all sequences that vanish at infinity
- $\ell^p(\mathbb{Z}), 1 \leq p < \infty$: spaces of p-th power summable sequences $x = \{x(k)\}_{k \in \mathbb{Z}}$ Norm: $\|x\|_{\ell^p} = (\sum_{k=-\infty}^{\infty} |x(k)|^p)^{1/p}$
- $L^p(\Omega)$, $1 \leq p < \infty$: space of all measurable, pth-power Lebesgue integrable functions on Ω Norm: $\|f\|_p = \left(\int_{\Omega} |f(t)|^p dt\right)^{1/p}$
- $L^{\infty}(\Omega)$: space of all functions for which the essential supremum norm $\|\cdot\|_{\infty}$ is finite

Definition (Bernstein Space)

Let \mathcal{B}_{σ} be the set of all entire functions f with the property that for all $\varepsilon > 0$ there exists a constant $C(\varepsilon)$ with $|f(z)| \leq C(\varepsilon) \exp((\sigma + \varepsilon)|z|)$ for all $z \in \mathbb{C}$.

The Bernstein space \mathcal{B}^p_{σ} consists of all functions in \mathcal{B}_{σ} , whose restriction to the real line is in $L^p(\mathbb{R})$, $1 \leq p \leq \infty$. The norm for \mathcal{B}^p_{σ} is given by the L^p -norm on the real line.

- A function in \mathcal{B}^{p}_{σ} is called bandlimited to σ .
- We have $\mathcal{B}^p_{\sigma} \subset \mathcal{B}^r_{\sigma}$ for all $1 \leqslant p \leqslant r \leqslant \infty$.
- $\mathcal{B}^{\infty}_{\sigma,0}$: space of all functions in $\mathcal{B}^{\infty}_{\sigma}$ that vanish at infinity.
- \mathcal{B}^2_{σ} : space of bandlimited functions with finite energy.

A sequence of rational numbers $\{r_n\}_{n\in\mathbb{N}}$ is called computable sequence if there exist recursive functions a, b, s from \mathbb{N} to \mathbb{N} such that $b(n) \neq 0$ for all $n \in \mathbb{N}$ and

$$\mathbf{r}_{\mathbf{n}} = (-1)^{s(\mathbf{n})} \frac{a(\mathbf{n})}{b(\mathbf{n})}, \qquad \mathbf{n} \in \mathbb{N}.$$

 A recursive function is a function, mapping natural numbers into natural numbers, that is built of simple computable functions and recursions. Recursive functions are computable by a Turing machine.

First example of an effective approximation

A real number x is said to be computable if there exists a computable sequence of rational numbers $\{r_n\}_{n \in \mathbb{N}}$ and a recursive function $\xi \colon \mathbb{N} \to \mathbb{N}$ such that for all $M \in \mathbb{N}$ we have

$$|x - r_n| < 2^{-M}$$

for all $n \ge \xi(M)$.

- \mathbb{R}_c : set of computable real numbers
- \mathbb{R}_c is a field, i.e., finite sums, differences, products, and quotients of computable numbers are computable.
- Commonly used constants like e and π are computable.

Computability in Banach spaces: Effective approximation by "simple" elements

A sequence $x = \{x(k)\}_{k \in \mathbb{Z}}$ in ℓ^p , $p \in [1, \infty) \cap \mathbb{R}_c$ is called computable in ℓ^p if every number x(k), $k \in \mathbb{Z}$, is computable and there exist a computable sequence $\{y_n\}_{n \in \mathbb{N}} \subset \ell^p$, where each y_n has only finitely many non-zero elements, all of which are computable as real numbers, and a recursive function $\xi \colon \mathbb{N} \to \mathbb{N}$, such that for all $M \in \mathbb{N}$ we have

$$\|\mathbf{x} - \mathbf{y}_{\mathbf{n}}\|_{\ell^{p}} \leq 2^{-\mathcal{M}}$$

for all $n \ge \xi(M)$.

- Effective approximation by simple / finite-length sequences
- Cl^p: set of all sequences that are computable in l^p
- Cc₀: set of all sequences that are computable in c₀

We call a function f elementary computable if there exists a natural number L and a sequence of computable numbers $\{\alpha_k\}_{k=-L}^L$ such that

$$f(t) = \sum_{k=-L}^{L} \alpha_k \frac{\text{sin}(\pi(t-k))}{\pi(t-k)}$$

- Every elementary computable function is Turing computable.
- For every elementary computable function f, the norm $\|f\|_{\mathcal{B}_{\pi}^{p}}$ is computable.

Computable Bandlimited Functions II

A function in $f \in \mathbb{B}^p_{\pi}$, $1 \leqslant p < \infty$, is called computable in \mathbb{B}^p_{π} if there exists a computable sequence of elementary computable functions $\{f_n\}_{n \in \mathbb{N}}$ and a recursive function $\xi \colon \mathbb{N} \to \mathbb{N}$ such that for all $M \in \mathbb{N}$ we have

$$\|\mathbf{f} - \mathbf{f}_n\|_p \leqslant 2^{-\lambda}$$

for all $n \ge \xi(M)$.

- CB^p_π: set of all functions that are computable in B^p_π.
- $CB_{\pi,0}^{\infty}$: set of all functions that are computable in $B_{\pi,0}^{\infty}$ (analog definition).

Computable Bandlimited Functions II

A function in $f \in \mathcal{B}^p_{\pi}$, $1 \leq p < \infty$, is called computable in \mathcal{B}^p_{π} if there exists a computable sequence of elementary computable functions $\{f_n\}_{n \in \mathbb{N}}$ and a recursive function $\xi \colon \mathbb{N} \to \mathbb{N}$ such that for all $M \in \mathbb{N}$ we have

$$\|\mathbf{f} - \mathbf{f}_n\|_p \leqslant 2^{-\lambda}$$

for all $n \ge \xi(M)$.

- CB^p_π: set of all functions that are computable in B^p_π.
- $CB^{\infty}_{\pi,0}$: set of all functions that are computable in $B^{\infty}_{\pi,0}$ (analog definition).

We can approximate every function $f \in CB^p_{\pi}$ by an elementary computable function, where we have an effective control of the approximation error.

Computable Bandlimited Functions III

For $f\in {\mathcal {CB}}^p_\pi, p\in [1,\infty)\cap {\mathbb R}_c$ and all $M\in {\mathbb N}$ we have

$$\|\mathbf{f} - \mathbf{f}_{\mathfrak{n}}\|_{\infty} \leqslant (1+\pi) \|\mathbf{f} - \mathbf{f}_{\mathfrak{n}}\|_{\mathfrak{p}} \leqslant \frac{1+\pi}{2^{M}}$$

for all $n \ge \xi(M)$.

We can approximate any function $f \in CB^p_{\pi}$ by an elementary computable function, where we have an effective and uniform control of the approximation error.

Observation

Let $f\in \mathcal{CB}^p_{\pi}, p\in [1,\infty)\cap \mathbb{R}_c$, or $f\in \mathcal{CB}^\infty_{\pi,0}$. Then $f|_{\mathbb{Z}}=\{f(k)\}_{k\in \mathbb{N}}$ is a computable sequence of computable numbers. Further we have $f|_{\mathbb{Z}}\in \mathcal{C}\ell^p$ if $p\in [1,\infty)\cap \mathbb{R}_c$, and $f|_{\mathbb{Z}}\in \mathcal{C}c_0$ if $p=\infty$.

Continuous-time signal f computable \Rightarrow Discrete-time signal f|_Z computable

Continuous-time signal f computable \bigotimes Discrete-time signal f|_Z computable

Continuous-time signal f computable \bigotimes Discrete-time signal f|_Z computable

Question 1:

Is there a simple necessary and sufficient condition for characterizing the computability of f?

Continuous-time signal f computable \bigotimes Discrete-time signal f| $_{\mathbb{Z}}$ computable

Question 1:

Is there a simple necessary and sufficient condition for characterizing the computability of f?

Question 2:

Is there a simple canonical algorithm to actually compute f from the samples $f|_{\mathbb{Z}}$?

Theorem

Let $f\in \mathfrak{B}^p_\pi,\,p\in (1,\infty)\cap \mathbb{R}_c.$ Then we have $f\in \mathfrak{CB}^p_\pi$ if and only if $f|_\mathbb{Z}\in \mathfrak{C}\ell^p.$

- For p ∈ (1,∞) ∩ ℝ_c, the computability of the discrete-time signal implies the computability of the continuous-time signal.
- This answers Question 1.

Theorem

Let $f\in {\mathbb B}^p_\pi, p\in (1,\infty)\cap {\mathbb R}_c.$ Then we have $f\in {\mathbb C}{\mathbb B}^p_\pi$ if and only if $f|_{\mathbb Z}\in {\mathbb C}{\ell}^p.$

- For p ∈ (1,∞) ∩ ℝ_c, the computability of the discrete-time signal implies the computability of the continuous-time signal.
- This answers Question 1.

For $p \in (1, \infty) \cap \mathbb{R}_c$ we have: f computable $\Leftrightarrow f|_{\mathbb{Z}}$ computable

That is we have a correspondence between the computable discrete-time signals in $\mathcal{C}\ell^p$ and the computable continuous-time signals in $\mathcal{C}\mathcal{B}^p_{\pi}$.

For p = 1 we do not have the correspondence. There exist signals that are in $\mathcal{C}\ell^1$ (computable in discrete-time), where the corresponding continuous-time signal is not in \mathcal{CB}^1_{π} .

Example:

- $f_1(t) = sin(\pi t)/(\pi t), t \in \mathbb{R}.$
- f_1 is a function of exponential type at most π and we have $f_1|_{\mathbb{Z}} \in \mathbb{C}\ell^1$.
- However, $f_1 \notin CB_{\pi}^1$, because $f_1 \notin B_{\pi}^1$.

For $p = \infty$ we also do not have the correspondence.

Theorem

 $\begin{array}{l} \mbox{There exists a } f_2 \in {\mathbb B}^\infty_{\pi,0} \mbox{ such that } f_2|_{\mathbb Z} \in {\mathbb C} c_0 \mbox{ and } f_2 \not\in {\mathbb C} {\mathbb B}^\infty_{\pi,0}.\\ \mbox{(We even have } f_2(t) \not\in {\mathbb C}_c \mbox{ for all } t \in {\mathbb R}_c \setminus {\mathbb Z}). \end{array}$

Theorem

Let $f \in \mathfrak{B}^p_{\pi}$, $p \in (1, \infty) \cap \mathbb{R}_c$. We have $f \in \mathfrak{CB}^p_{\pi}$ if and only if

- **1** $f|_{\mathbb{Z}}$ is a computable sequence of computable numbers,
- $\textcircled{2} \ \|f|_{\mathbb{Z}}\|_{\ell^p} \in \mathbb{R}_c.$
- We do not require that the sequence $f|_{\mathbb{Z}}$ is computable in ℓ^p , but only that the number $||f|_{\mathbb{Z}}||_{\ell^p}$ is computable.

An Answer to Question 2

Shannon sampling series

$$(S_N f)(t) = \sum_{k=-N}^{N} f(k) \frac{\sin(\pi(t-k))}{\pi(t-k)}, \quad t \in \mathbb{R}.$$

Theorem

Let $p \in (1, \infty) \cap \mathbb{R}_c$ and $f \in \mathcal{B}^p_{\pi}$. Then we have $f \in \mathcal{CB}^p_{\pi}$ if and only if $f|_{\mathbb{Z}}$ is a computable sequence of computable numbers and $S_N f$ converges effectively to f in the L^p -norm as N tends to infinity.

 The Shannon sampling series provides a remarkably simple algorithm to construct a computable sequence of elementary computable functions in CB^p_π that converges effectively to f. • For p = 1 and $p = \infty$ the Shannon sampling series cannot be used for this purpose.

Theorem

There exists a signal $f_3 \in \mathbb{CB}^1_{\pi}$ such that $S_1 f_3 \notin \mathbb{CB}^1_{\pi}$, because $S_1 f_3 \notin \mathbb{B}^1_{\pi}$.

Theorem

There exists a signal $f_4 \in CB^{\infty}_{\pi,0}$ such that $\{S_N f_4\}_{N \in \mathbb{N}}$ does not converge effectively to f_4 in the L^{∞} -norm.

- We studied the effective (i.e., computable) approximation of bandlimited signals (→ algorithmic control of the approximation error).
- We gave a necessary and sufficient condition for computability.
- For $p \in (1, \infty) \cap \mathbb{R}_c$ we have:
 - 1) f computable \Leftrightarrow f $|_{\mathbb{Z}}$ computable,
 - 2) Shannon sampling series provides a simple algorithm for the effective approximation of f.
- For p = 1 and $p = \infty$ we have no correspondence.

Thank you!