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Motivation

• The actual bandwidth B(f) of a bandlimited signal is a key quantity. Relevant in numerous
applications (e.g. wireless communications).

• The bandwidth determines the minimum sampling rate (Nyquist rate) that is necessary to
reconstruct a bandlimited signal from its samples (Shannon sampling series).

B(f)→ rmin = B(f)/π→ {f(k/rmin)}k∈Z

• The sequence of samples {f(kπ/B(f))}k∈Z, taken at Nyquist rate, can therefore be seen as a
minimum representation of the signal f (no loss of information).

Can we determine the actual bandwidth B(f) of a bandlimited signal f, i.e., the small-
est number σ such that f is bandlimited with bandwidth σ, on a digital computer?
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Turing Machine I

Turing Machine:
Abstract device that manipulates symbols on a strip of tape according to certain rules.

• Turing machines are an idealized computing model.
• No limitations on computing time or memory, no computation errors.
• Although the concept is very simple, Turing machines are capable of simulating any given

algorithm.

Turing machines are suited to study the limitations in performance of a digital computer:

Anything that is not Turing computable cannot be computed
on a real digital computer, regardless how powerful it may be.

A. M. Turing, “On computable numbers, with an application to the Entscheidungsproblem,” Proceedings of the London Mathematical Society,
vol. s2-42, no. 1, pp. 230–265, Nov. 1936
A. M. Turing, “On computable numbers, with an application to the Entscheidungsproblem. A correction,” Proceedings of the London Mathe-
matical Society, vol. s2-43, no. 1, pp. 544–546, Jan. 1937

Optimal Sampling Rate and Bandwidth of Bandlimited Signals—An Algorithmic Perspective 3



Turing Machine II

• There exist problems that cannot be solved on a digital computer.
• For example, computation of Fourier transform or spectral factorization for certain signals.
• The computer cannot produce, for any desired error ε, a result that ε-close to the true value.
→ the approximation error cannot be controlled.
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Questions

Questions:

1 Is B(f) computable?

2 Can we compute a lower bound for B(f)?

3 Can we compute an upper bound for B(f)?

In terms of sampling rate, those questions read:

1 Is the optimal, i.e. minimum required sampling rate computable?

2 Can we compute a lower bound for the minimum required sampling rate?

3 Can we compute an upper bound for the minimum required sampling rate?
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Overview of the Results

Actual bandwidth B(f)
computable?

Determine if σ is a
lower bound for B(f)?

Determine if σ is an
upper bound for B(f)?

x No X Yes x No
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Notation

• Lp(Ω), 1 6 p <∞: space of all measurable, pth-power Lebesgue integrable functions on Ω
Norm: ‖f‖p =

(∫
Ω|f(t)|p dt

)1/p

• L∞(Ω): space of all functions for which the essential supremum norm ‖ · ‖∞ is finite
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Bandlimited Functions

Definition (Bernstein Space)
Let Bσ be the set of all entire functions f with the property that for all ε > 0 there exists a constant
C(ε) with |f(z)| 6 C(ε) exp

(
(σ+ ε)|z|

)
for all z ∈ C.

The Bernstein space B
p
σ consists of all functions in Bσ, whose restriction to the real line is in Lp(R),

1 6 p 6∞. The norm for Bpσ is given by the Lp-norm on the real line.

• A function in B
p
σ is called bandlimited to σ.

• B(f): actual bandwidth of the function B(f) = min{σ ∈ R : f ∈ Bσ}

• We have B
p
σ ⊂ Brσ for all 1 6 p 6 r 6∞.

• B2
σ: space of bandlimited functions with finite energy.

Optimal Sampling Rate and Bandwidth of Bandlimited Signals—An Algorithmic Perspective 8



Actual Bandwidth for B2
π

For f ∈ B2
π we have a simple characterization of the actual bandwidth.

• B(f) is the smallest number σ > 0 such that∫∞
−∞|f(t)|2 dt =

1
2π

∫σ
−σ

|f̂(ω)|2 dω.

• B(f) is the smallest σ > 0 such that

f(t) =
1

2π

∫σ
−σ

f̂(ω) eiωt dω

for all t ∈ R.

Optimal Sampling Rate and Bandwidth of Bandlimited Signals—An Algorithmic Perspective 9



Computable Sequences of Rationals

A sequence of rational numbers {rn}n∈N is called computable sequence if there exist recursive
functions a,b, s from N to N such that b(n) 6= 0 for all n ∈ N and

rn = (−1)s(n)
a(n)

b(n)
, n ∈ N.

• A recursive function is a function, mapping natural numbers into natural numbers, that is built of
simple computable functions and recursions. Recursive functions are computable by a Turing
machine.
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Computable Real Numbers

First example of an effective approximation

A real number x is said to be computable if there exists a computable sequence of rational numbers
{rn}n∈N and a recursive function ξ : N→ N such that for all M ∈ N we have

|x− rn| 6 2−M

for all n > ξ(M).

• Rc: set of computable real numbers
• Rc is a field, i.e., finite sums, differences, products, and quotients of computable numbers are

computable.
• Commonly used constants like e and π are computable.
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Computable Bandlimited Functions I

We call a function f elementary computable if there exists a natural number L and a sequence of
computable numbers {αk}

L
k=−L such that

f(t) =

L∑
k=−L

αk
sin(π(t− k))
π(t− k)

.

• Every elementary computable function is Turing computable.
• For every elementary computable function f, the norm ‖f‖Bpπ is computable.
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Computable Bandlimited Functions II
A function in f ∈ B

p
π is called computable in B

p
π if there exists a computable sequence of elementary

computable functions {fn}n∈N and a recursive function ξ : N→ N such that for all M ∈ N we have

‖f− fn‖p 6 2−M

for all n > ξ(M).

• CB
p
π: set of all functions that are computable in B

p
π.
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Computability of the Actual Bandwidth

Question:
Does there exist an algorithm that, for every computable signal f ∈ CB1

π (or f ∈ CB2
π), is able to

compute B(f)?

• Necessary condition: B maps computable functions into computable numbers (B : CB1
π → Rc).

Weaker question:
Do we have B(f) ∈ Rc for all f ∈ CB1

π (or f ∈ CB2
π)?

Theorem
There exists a signal f1 ∈ CB1

π (and CB2
π) such that B(f1) 6∈ Rc, i.e., B(f1) is not Turing computable.

• The actual bandwidth is not always computable.
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Semi Decidability I

• There are problematic signals f, for which we cannot compute B(f).
• Can we at least algorithmically determine whether, for a given signal f, we can compute B(f), or

not?
• Would be helpful to avoid problematic signals, e.g., in automated computer aided design (CAD).

We call a set M ⊂ CB1
π semi-decidable if there exists a Turing machine

TM : CB1
π → {TM stops, TM runs forever}

that, given an input f ∈ CB1
π, stops if and only if f ∈M.
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Semi Decidability II

Set of all signals in CB1
π for which B(f) can be computed algorithmically:

C1
BW =

{
f ∈ CB1

π : B(f) ∈ Rc
}

Set of all signals in CB1
π, for which B(f) cannot be computed algorithmically:

NC1
BW = CB1

π \ C1
BW =

{
f ∈ CB1

π : B(f) 6∈ Rc
}

Can we determine algorithmically whether f ∈ NC1
BW?

Theorem
Neither C1

BW nor NC1
BW is semi-decidable.
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Approximate Bandwidth I

For σ > 0, we want to algorithmically determine if B(f) > σ.

Theorem
For all σ ∈ (0,π) ∩ Rc the set

C1
>(σ) =

{
f ∈ CB1

π : B(f) > σ
}

is semi-decidable.

• There exists an algorithm that stops if and only if B(f) > σ.
• Does not allow us to determine an effective upper bound for B(f), because this Turing machine

does not stop if B(f) 6 σ.
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Approximate Bandwidth II

Theorem
For all σ ∈ (0,π) ∩ Rc the set

C1
6(σ) =

{
f ∈ CB1

π : B(f) 6 σ
}

is not semi-decidable.

Consequence:
• For a given σ ∈ (0,π) ∩ Rc, we cannot determine algorithmically for all f ∈ CB1

π whether f is
uniquely determined by the samples {f(kπ/σ)}k∈Z.
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Conclusions

• We studied if it is possible to algorithmically determine the actual bandwidth of a bandlimited
signal.

• We proved that this is not possible in general.
• The minimal sampling rate cannot be determined algorithmically in general.
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Thank you!
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