Optimal Sampling Rate and Bandwidth of Bandlimited Signals

An Algorithmic Perspective

Holger Boche^{1,2} and <u>Ullrich J. Mönich¹</u>

¹Technical University of Munich, Chair of Theoretical Information Technology ²Munich Center for Quantum Science and Technology (MCQST)

IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP2020)

- The actual bandwidth B(f) of a bandlimited signal is a key quantity. Relevant in numerous applications (e.g. wireless communications).
- The bandwidth determines the minimum sampling rate (Nyquist rate) that is necessary to reconstruct a bandlimited signal from its samples (Shannon sampling series).

 $B(f) \to r_{\text{min}} = B(f)/\pi \to \{f(k/r_{\text{min}})\}_{k \in \mathbb{Z}}$

 The sequence of samples {f(kπ/B(f))}_{k∈ℤ}, taken at Nyquist rate, can therefore be seen as a minimum representation of the signal f (no loss of information).

Can we determine the actual bandwidth B(f) of a bandlimited signal f, i.e., the smallest number σ such that f is bandlimited with bandwidth σ , on a digital computer?

Turing Machine I

Turing Machine:

Abstract device that manipulates symbols on a strip of tape according to certain rules.

- Turing machines are an idealized computing model.
- No limitations on computing time or memory, no computation errors.
- Although the concept is very simple, Turing machines are capable of simulating any given algorithm.

Turing machines are suited to study the limitations in performance of a digital computer:

Anything that is not Turing computable cannot be computed on a real digital computer, regardless how powerful it may be.

- A. M. Turing, "On computable numbers, with an application to the Entscheidungsproblem," *Proceedings of the London Mathematical Society*, vol. s2-42, no. 1, pp. 230–265, Nov. 1936
- A. M. Turing, "On computable numbers, with an application to the Entscheidungsproblem. A correction," *Proceedings of the London Mathematical Society*, vol. s2-43, no. 1, pp. 544–546, Jan. 1937

- There exist problems that cannot be solved on a digital computer.
- For example, computation of Fourier transform or spectral factorization for certain signals.
- The computer cannot produce, for any desired error ε, a result that ε-close to the true value.
 → the approximation error cannot be controlled.

Questions

Questions:

- 1 Is B(f) computable?
- **2** Can we compute a lower bound for B(f)?
- **3** Can we compute an upper bound for B(f)?

Questions:

- 1 Is B(f) computable?
- 2 Can we compute a lower bound for B(f)?
- 3 Can we compute an upper bound for B(f)?

In terms of sampling rate, those questions read:

- 1 Is the optimal, i.e. minimum required sampling rate computable?
- 2 Can we compute a lower bound for the minimum required sampling rate?
- 8 Can we compute an upper bound for the minimum required sampling rate?

Actual bandwidth B(f) computable?	Determine if σ is a lower bound for $B(f)$?	Determine if σ is an upper bound for $B(f)$?
x No	√ Yes	x No

- $L^{p}(\Omega)$, $1 \leq p < \infty$: space of all measurable, pth-power Lebesgue integrable functions on Ω Norm: $\|f\|_{p} = (\int_{\Omega} |f(t)|^{p} dt)^{1/p}$
- $L^{\infty}(\Omega)$: space of all functions for which the essential supremum norm $\|\cdot\|_{\infty}$ is finite

Definition (Bernstein Space)

Let \mathcal{B}_{σ} be the set of all entire functions f with the property that for all $\varepsilon > 0$ there exists a constant $C(\varepsilon)$ with $|f(z)| \leq C(\varepsilon) \exp((\sigma + \varepsilon)|z|)$ for all $z \in \mathbb{C}$.

The Bernstein space \mathcal{B}^p_{σ} consists of all functions in \mathcal{B}_{σ} , whose restriction to the real line is in $L^p(\mathbb{R})$, $1 \leq p \leq \infty$. The norm for \mathcal{B}^p_{σ} is given by the L^p -norm on the real line.

- A function in \mathcal{B}^{p}_{σ} is called bandlimited to σ .
- B(f): actual bandwidth of the function $B(f) = min\{\sigma \in \mathbb{R} : f \in \mathcal{B}_{\sigma}\}$
- We have $\mathcal{B}^p_{\sigma} \subset \mathcal{B}^r_{\sigma}$ for all $1 \leqslant p \leqslant r \leqslant \infty$.
- \mathcal{B}_{σ}^2 : space of bandlimited functions with finite energy.

For $f\in {\mathbb B}^2_\pi$ we have a simple characterization of the actual bandwidth.

• B(f) is the smallest number $\sigma > 0$ such that

$$\int_{-\infty}^{\infty} |f(t)|^2 dt = \frac{1}{2\pi} \int_{-\sigma}^{\sigma} |\widehat{f}(\omega)|^2 d\omega.$$

• B(f) is the smallest $\sigma > 0$ such that

$$f(t) = \frac{1}{2\pi} \int_{-\sigma}^{\sigma} \hat{f}(\omega) \, e^{i\,\omega\,t} \, d\omega$$

for all $t \in \mathbb{R}$.

A sequence of rational numbers $\{r_n\}_{n\in\mathbb{N}}$ is called computable sequence if there exist recursive functions a, b, s from \mathbb{N} to \mathbb{N} such that $b(n) \neq 0$ for all $n \in \mathbb{N}$ and

$$\mathbf{r}_{\mathbf{n}} = (-1)^{s(\mathbf{n})} \frac{a(\mathbf{n})}{b(\mathbf{n})}, \qquad \mathbf{n} \in \mathbb{N}.$$

 A recursive function is a function, mapping natural numbers into natural numbers, that is built of simple computable functions and recursions. Recursive functions are computable by a Turing machine.

First example of an effective approximation

A real number x is said to be computable if there exists a computable sequence of rational numbers $\{r_n\}_{n \in \mathbb{N}}$ and a recursive function $\xi \colon \mathbb{N} \to \mathbb{N}$ such that for all $M \in \mathbb{N}$ we have

$$|\mathbf{x} - \mathbf{r}_{\mathbf{n}}| \leq 2^{-M}$$

for all $n \ge \xi(M)$.

- \mathbb{R}_c : set of computable real numbers
- \mathbb{R}_c is a field, i.e., finite sums, differences, products, and quotients of computable numbers are computable.
- Commonly used constants like e and π are computable.

We call a function f elementary computable if there exists a natural number L and a sequence of computable numbers $\{\alpha_k\}_{k=-L}^L$ such that

$$f(t) = \sum_{k=-L}^{L} \alpha_k \frac{\text{sin}(\pi(t-k))}{\pi(t-k)}$$

- Every elementary computable function is Turing computable.
- For every elementary computable function f, the norm $\|f\|_{\mathcal{B}_{\pi}^{p}}$ is computable.

Computable Bandlimited Functions II

A function in $f \in \mathcal{B}^p_{\pi}$ is called computable in \mathcal{B}^p_{π} if there exists a computable sequence of elementary computable functions $\{f_n\}_{n \in \mathbb{N}}$ and a recursive function $\xi \colon \mathbb{N} \to \mathbb{N}$ such that for all $M \in \mathbb{N}$ we have

$$\|\mathbf{f} - \mathbf{f}_{n}\|_{p} \leqslant 2^{-M}$$

for all $n \ge \xi(M)$.

• \mathcal{CB}^p_{π} : set of all functions that are computable in \mathcal{B}^p_{π} .

Computable Bandlimited Functions II

A function in $f \in \mathcal{B}^p_{\pi}$ is called computable in \mathcal{B}^p_{π} if there exists a computable sequence of elementary computable functions $\{f_n\}_{n \in \mathbb{N}}$ and a recursive function $\xi \colon \mathbb{N} \to \mathbb{N}$ such that for all $M \in \mathbb{N}$ we have

$$\|\mathbf{f} - \mathbf{f}_{\mathbf{n}}\|_{\mathbf{p}} \leqslant 2^{-M}$$

for all $n \ge \xi(M)$.

CB^p_π: set of all functions that are computable in B^p_π.

Question:

Does there exist an algorithm that, for every computable signal $f \in CB^1_{\pi}$ (or $f \in CB^2_{\pi}$), is able to compute B(f)?

Question:

Does there exist an algorithm that, for every computable signal $f \in CB^1_{\pi}$ (or $f \in CB^2_{\pi}$), is able to compute B(f)?

• Necessary condition: B maps computable functions into computable numbers (B: $\mathcal{CB}^1_{\pi} \to \mathbb{R}_c$).

Weaker question:

Do we have $B(f) \in \mathbb{R}_c$ for all $f \in C\mathcal{B}^1_{\pi}$ (or $f \in C\mathcal{B}^2_{\pi}$)?

Question:

Does there exist an algorithm that, for every computable signal $f \in CB^1_{\pi}$ (or $f \in CB^2_{\pi}$), is able to compute B(f)?

• Necessary condition: B maps computable functions into computable numbers (B: $\mathcal{CB}^1_{\pi} \to \mathbb{R}_c$).

Weaker question:

Do we have $B(f) \in \mathbb{R}_c$ for all $f \in \mathcal{CB}^1_{\pi}$ (or $f \in \mathcal{CB}^2_{\pi}$)?

Theorem

There exists a signal $f_1 \in \mathbb{CB}^1_{\pi}$ (and \mathbb{CB}^2_{π}) such that $B(f_1) \notin \mathbb{R}_c$, i.e., $B(f_1)$ is not Turing computable.

• The actual bandwidth is not always computable.

- There are problematic signals f, for which we cannot compute B(f).
- Can we at least algorithmically determine whether, for a given signal f, we can compute B(f), or not?
- Would be helpful to avoid problematic signals, e.g., in automated computer aided design (CAD).

- There are problematic signals f, for which we cannot compute B(f).
- Can we at least algorithmically determine whether, for a given signal f, we can compute B(f), or not?
- Would be helpful to avoid problematic signals, e.g., in automated computer aided design (CAD).

We call a set $\mathcal{M} \subset \mathfrak{CB}^1_{\pi}$ semi-decidable if there exists a Turing machine

TM: $C\mathcal{B}^1_{\pi} \rightarrow \{TM \text{ stops}, TM \text{ runs forever}\}$

that, given an input $f \in CB^1_{\pi}$, stops if and only if $f \in M$.

Semi Decidability II

Set of all signals in $C\mathcal{B}^1_{\pi}$ for which B(f) can be computed algorithmically:

$$\mathcal{C}_{\mathsf{BW}}^{1} = \left\{ f \in \mathcal{CB}_{\pi}^{1} \colon B(f) \in \mathbb{R}_{c} \right\}$$

Set of all signals in CB_{π}^{1} , for which B(f) cannot be computed algorithmically:

$$\mathcal{NC}_{\mathsf{BW}}^{1} = \mathcal{CB}_{\pi}^{1} \setminus \mathcal{C}_{\mathsf{BW}}^{1} = \left\{ f \in \mathcal{CB}_{\pi}^{1} \colon B(f) \not \in \mathbb{R}_{c} \right\}$$

Semi Decidability II

Set of all signals in $C\mathcal{B}^1_{\pi}$ for which B(f) can be computed algorithmically:

$$\mathcal{C}_{\mathsf{BW}}^{1} = \left\{ f \in \mathcal{CB}_{\pi}^{1} \colon B(f) \in \mathbb{R}_{c} \right\}$$

Set of all signals in $C\mathcal{B}^1_{\pi}$, for which B(f) cannot be computed algorithmically:

$$\mathcal{NC}_{\mathsf{BW}}^{1} = \mathcal{CB}_{\pi}^{1} \setminus \mathcal{C}_{\mathsf{BW}}^{1} = \left\{ f \in \mathcal{CB}_{\pi}^{1} \colon B(f) \not\in \mathbb{R}_{c} \right\}$$

Can we determine algorithmically whether $f \in \mathcal{NC}_{BW}^1$?

Semi Decidability II

Set of all signals in $C\mathcal{B}^1_{\pi}$ for which B(f) can be computed algorithmically:

$$\mathcal{C}_{\mathsf{BW}}^{1} = \left\{ f \in \mathcal{CB}_{\pi}^{1} \colon B(f) \in \mathbb{R}_{c} \right\}$$

Set of all signals in CB_{π}^{1} , for which B(f) cannot be computed algorithmically:

$$\mathcal{NC}_{\mathsf{BW}}^{1} = \mathcal{CB}_{\pi}^{1} \setminus \mathcal{C}_{\mathsf{BW}}^{1} = \left\{ f \in \mathcal{CB}_{\pi}^{1} \colon B(f) \not\in \mathbb{R}_{c} \right\}$$

Can we determine algorithmically whether $f \in \mathcal{NC}_{BW}^1$?

Theorem

Neither C_{BW}^1 *nor* NC_{BW}^1 *is semi-decidable.*

For $\sigma > 0$, we want to algorithmically determine if $B(f) > \sigma$.

For $\sigma > 0$, we want to algorithmically determine if $B(f) > \sigma$.

Theorem

For all $\sigma \in (0, \pi) \cap \mathbb{R}_c$ the set

$$\mathfrak{C}^1_{\boldsymbol{\flat}}(\sigma) = \left\{ f \in \mathfrak{CB}^1_{\pi} \colon B(f) > \sigma \right\}$$

is semi-decidable.

• There exists an algorithm that stops if and only if $B(f) > \sigma$.

For $\sigma > 0$, we want to algorithmically determine if $B(f) > \sigma$.

Theorem

For all $\sigma \in (0, \pi) \cap \mathbb{R}_c$ the set

$$\mathfrak{C}^1_{\boldsymbol{\flat}}(\sigma) = \left\{ f \in \mathfrak{CB}^1_{\pi} \colon B(f) > \sigma \right\}$$

is semi-decidable.

- There exists an algorithm that stops if and only if $B(f) > \sigma$.
- Does not allow us to determine an effective upper bound for B(f), because this Turing machine does not stop if B(f) ≤ σ.

Theorem

For all $\sigma \in (0, \pi) \cap \mathbb{R}_c$ the set

$$\mathfrak{C}^1_\leqslant(\sigma) = \left\{ f \in \mathfrak{CB}^1_\pi \colon B(f) \leqslant \sigma \right\}$$

is not semi-decidable.

Theorem

For all $\sigma \in (0, \pi) \cap \mathbb{R}_c$ the set

$$\mathfrak{C}^1_{\leqslant}(\sigma) = \left\{ f \in \mathfrak{CB}^1_{\pi} \colon B(f) \leqslant \sigma \right\}$$

is not semi-decidable.

Consequence:

• For a given $\sigma \in (0, \pi) \cap \mathbb{R}_c$, we cannot determine algorithmically for all $f \in CB^1_{\pi}$ whether f is uniquely determined by the samples $\{f(k\pi/\sigma)\}_{k\in\mathbb{Z}}$.

- We studied if it is possible to algorithmically determine the actual bandwidth of a bandlimited signal.
- We proved that this is not possible in general.
- The minimal sampling rate cannot be determined algorithmically in general.

Thank you!