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Background|Unsupervised domain adaptation (UDA)
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Background|UDA for semantic segmentation

When applying semantic segmentation,
much more complex scenes

much more complex feature space

much more difficult Example

GTA5 dataset[1] (source) CITYSCAPES[2] dataset (target)

Adapt to

[1] Richter, Stephan R., et al. "Playing for data: Ground truth from computer games." European conference on computer vision. Springer, Cham, 2016.
[2] Cordts, Marius, et al. "The cityscapes dataset for semantic urban scene understanding." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.



Method|Overview
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Two stages:

Stage 1
Image-to-image translation:
(based on StarGAN[3])
• Translate source set S 
to target domain (referred to as S’)
for reducing visual differences

[3] Choi, Yunjey, et al. "Stargan: Unified generative adversarial networks for multi-domain image-to-image translation." Proceedings of the IEEE 
conference on computer vision and pattern recognition. 2018.

Stage 1 Stage 2

Novelty

Source set S

Translated 
source set S’

Consistency

Thresholding

Thresholding

Supervision

Supervision
adv

Image-to-image translation Feature-level domain adaptation

Translated 
source set S’

Target set T

S’ Prediction for S’

T Prediction for T

Ground truth label of S’

Pseudo label of T

S’

T

T

S’

adv
Stage 2
Feature-level domain adaptation:
• Adversarial learning
for aligning features distributions

• Pseudo labels
for further improvements



Method|Image-to-image translation
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Generator
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𝐿!"#: reconstruction loss
𝐿$%&: adversarial loss (real or fake)
𝐿#'(: domain classification loss (S or T)



Method|Symmetric adaptation
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More robust than single one

More accurate pseudo labels

Accuracy of pseudo labels has great impact on final performance.



Method|Symmetric adaptation consistency
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Consistency can help to produce more 

reliable pseudo labels.

Confidence map for selecting pixels:

𝑀#+,-. =
𝑀*!+/$ +𝑀#+,(.(0

2

𝑀*!+/$: probability map

𝑀#+,(.(0: consistency map



Experiment|Datasets and implementation details

GTA5 dataset (used as source domain)
• Labeled synthesis data
• Including 24966 images of urban scenes
• 1914 x 1052 resolution

CITYSCAPES dataset (used as target domain)
• Unlabeled real-world data
• Including 2975 images as training set and 500 images as test set
• 2048 x 1024 resolution

Implementation details
Implementation environment: Python3 + Pytorch1.1
Network architecture: DeepLab V2 with Resnet 101

19 shared categories (road, sky, tree, car, building …)



Experiment|Experiment results

AdaptSegNet[4]: adversarial learning
Cycada[5]: Image-to-image translation 

+ adversarial learning
BDL[6]: Image-to-image translation 

+ adversarial learning 
+ pseudo label     

Ours: Image-to-image translation 
+ symmetric adversarial learning 
+ pseudo label (using symmetric consistency)

Ours(single) – performance of single model
Ours(fusion) – performance fusing two models

*results when training image-to-image translation model once

[4] Tsai, Yi-Hsuan, et al. "Learning to adapt structured output space for semantic segmentation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.
[5] Hoffman, Judy, et al. "Cycada: Cycle-consistent adversarial domain adaptation." arXiv preprint arXiv:1711.03213 (2017).
[6] Li, Yunsheng, Lu Yuan, and Nuno Vasconcelos. "Bidirectional learning for domain adaptation of semantic segmentation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019.
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Conclusion

Architecture of our method:
• Consisting of two stages, image-to-image translation and feature-level adaptation.
• In feature-level adaptation employing adversarial learning and pseudo labels.

Advantages of our method:
• Symmetric adaptation with adversarial learning is more robust.
• Pseudo labels produced using symmetric consistency are more reliable.

Achievement:
• Our method achieved state-of-the-art performance on GTA5-to-CITYSCAPES scenario.

Future work:
• The image-to-image translation method can still be improved for domain adaptation task.

We have proposed an unsupervised domain adaptation method for semantic segmentation.


