Regularized partial phase synchrony index applied to dynamical functional connectivity estimation

Gaëtan Frusque

Paulo Gonçalves, Pierre Borgnat and Julien Jung

ENS de Lyon, LIP, CNRS gaetan.frusque@ens-lyon.fr

Context

Data from epileptic patient

Figure 1: The patient stays one week at the hospital to record several seizures¹.

Figure 2: intracranial EEG electrodes implemented in the brain².

Context

Introduction

¹lida, K., & Otsubo, H. (2017). Stereoelectroencephalography: indication and efficacy. Neurologia medico-chirurgica, 57(8), 375-385..

²https://consultqd.clevelandclinic.org/turning-to-seeg-for-pediatric-patients-with-refractory-epilepsy/

General problem of my thesis

Figure 3: Example of a multivariate

signal from the recording of a

seizure

(b)

¹Dong et Al. (2019). Learning graphs from data: A signal representation perspective. IEEE Signal Processing Magazine, 36(3), 44-63..

²Richiardi et Al.(2009). Machine learning with brain graphs: predictive modeling approaches for functional imaging in systems neuroscience. IEEE Signal Processing Magazine, 30(3), 58-70.

What is a connection ? Functional connectivity

Model of 4 signals with temporal synchrony

Corresponding functional connectivity as a function of time

Correlation and partial correlation 1/2

Example of graphical model

$$\begin{split} s_1(t) &= \eta_1(t), \\ s_2(t) &= 0.8 s_1(t) + 0.2 \eta_2(t), \\ s_3(t) &= 0.8 s_1(t) + 0.2 \eta_3(t), \end{split}$$

 $\eta(t)$ is a realisation from a Gaussian distribution

Partial correlation

Context

Introduction

April 15, 2020 4 / 29

Correlation and partial correlation 2/2

Example of graphical model

$$\begin{split} s_4(t) = & 0.4s_5(t) + 0.4s_6(t) + 0.2\eta_4(t), \\ s_5(t) = & \eta_5(t), \\ s_6(t) = & \eta_6(t), \end{split}$$

 $\eta(t)$ is a realisation from a Gaussian distribution

Partial correlation

Context

Introduction

April 15, 2020 5 / 29

Considering *L* real centred signals $s_l(t)$, $l \in 1, ..., L$, the empirical covariance between the signal *l* and *l'* is noted :

$$c_{ll'} = \sum_{t=1}^T s_l(t) s_l'(t)$$

C is the empirical covariance matrix and the correlation index:

$$o_{II'} = \frac{c_{II'}}{\sqrt{c_{II}c_{I'I'}}}$$

We call $\Theta = \mathbf{C}^{-1}$ the precision matrix, it can be shown that the partial correlation index, noted $\check{\rho}$, between different signal *I* and *I'* is¹ :

$$\check{\rho}_{II'} = -\frac{\theta_{II'}}{\sqrt{\theta_{II}\theta_{I'I'}}}$$

Context

Introduction

¹Whittaker, J. (2009). Graphical models in applied multivariate statistics. Wiley Publishing.

Graphical lasso aims to add regularizations on the precision matrix assuming signal follows a multivariate Gaussian distribution:

$$p(\mathbf{s},\Theta) = \frac{1}{2\pi\sqrt{\det(\Theta^{-1})}} e^{-\frac{1}{2}\mathbf{s}^{t}\Theta\mathbf{s}} \frac{e^{-\lambda \operatorname{Reg}(\Theta)}}{\int e^{-\lambda \operatorname{Reg}(\Theta)} \mathrm{d}\Theta}$$

minimizing the regularized negative log-likelihood function gives 1 :

$$\underset{\Theta \in \mathbb{S}_{++}^{p}}{\operatorname{argmin}} \quad -\ln(\det(\Theta)) + \operatorname{Tr}(\Theta \mathsf{C}) + \frac{\lambda \operatorname{Reg}(\Theta)}{\operatorname{Reg}(\Theta)}$$

The usually performed regularisation corresponds to impose sparsity on the precision matrix $Reg(\Theta) = || \Theta ||_{od,1}$

 $^{^{1}}$ Friedman et Al. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9(3), 432-441.

• We note the analytic representation of the signal $s_l(t)$:

$$z_l(t) = a_l(t)e^{i\phi_l(t)}$$

- $a_l(t)$ the instantaneous amplitude of the signal $s_l(t)$.
- $\phi_l(t)$ the instantaneous phase of the signal $s_l(t)$.
- The Phase Locking Value $(PLV)^1$ between signals *I* and *I'* is defined as:

$$P_{ll'} = \frac{1}{T} \Big| \sum_{t=1}^{T} e^{i\phi_l(t)} (e^{i\phi_{l'}(t)})^* \Big| = \frac{1}{T} \Big| \sum_{t=1}^{T} e^{i(\phi_l(t) - \phi_{l'}(t))} \Big|$$

• We propose a regularized and partial extension of the Phase locking value index.

¹ JLachaux, J. P., Rodriguez, E., Martinerie, J., & Varela, F. J. (1999). Measuring phase synchrony in brain signals. Human brain mapping, 8(4), 194-208.

Regularized partial Phase Locking Value

Non parametric partial PLV

A non parametric estimate of the PLV can be computed, first we consider the pairwise phase synchrony interraction:

$$R_{II'} = rac{1}{T} \sum_{t=1}^{T} e^{i(\phi_l(t) - \phi_{l'}(t))}$$

R corresponds to the covariance matrix **C** between phase signals $e^{i\phi_l(t)}$, $\forall l \in 1, ..., L$. PLV index is :

$$P_{ll'} = |R_{ll'}|$$
 (1)

Calling $\Omega = \mathbf{R}^{-1}$ the inverse of the pairwise phase synchrony matrix. a partial PLV index (pPLV), noted Q, can be introduced¹:

$$Q_{II'} = rac{\mid \Omega_{II'} \mid}{\sqrt{\Omega_{II}\Omega_{I'I'}}}$$

Regularized partial Phase Locking Value

¹Schelter et Al. (2006). Partial phase synchronization for multivariate synchronizing systems. Physical review letters, 96(20), 208103.

We add regularization on the pPLV function minimizing :

$$\underset{\Omega \in \mathbb{S}_{++}^{\rho}}{\operatorname{argmin}} \quad -\ln(\det(\Omega)) + \operatorname{Tr}(\Omega \mathbf{R}) + \lambda \operatorname{Reg}(\Omega)$$

Even if the phase signal doesn't follow a multivariate gaussian distribution, this cost function is relevant since :

- The pairwise synchony matrix **R** is positive definite, thus the cost function is convex.
- If $\lambda = 0$, the minimizer will coincide with $\Omega = \mathbf{R}^{-1}$.

Time series 1/4

The Sparse and the temporal regularization are added to the Graphical lasso criteria:

$$\begin{aligned} \underset{\{\Omega^{(1)},\ldots,\Omega^{(N)}\}\in\mathbb{S}_{++}^{p}}{\operatorname{argmin}} & \sum_{n=1}^{N} I\left(\Omega^{(n)}, \mathbf{R}^{(n)}\right) + \lambda \mid\mid \Omega^{(n)}\mid\mid_{od,1} + \gamma \sum_{m=2}^{N} g(\Omega^{(m)} - \Omega^{(m-1)}), \end{aligned}$$

$$\text{Where } I\left(\Omega^{(n)}, \mathbf{R}^{(n)}\right) = -\ln(\det(\Omega^{(n)})) + \operatorname{Tr}\left(\Omega^{(n)}\mathbf{R}^{(n)}\right)$$

$$g(\mathbf{X}) = \sum_{i=1}^{N} \mid\mid x_{i}(t)\mid\mid_{F}^{2} \end{aligned}$$

TVGL¹ is convex, can be implemented with ADMM¹, forward-backward ²

Regularized partial Phase Locking Value A new fu

¹ Hallac et Al. (2017, August). Network inference via the time-varying graphical lasso. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 205-213). ACM. ² Tomasi et Al. (2018, August). Forward-Backward Splitting for Time-Varying Graphical Models. In International Conference on Probabilistic Graphical Models (pp. 475-486).

A new functional connectivity measure

Application

Roessler model

Ideal functional connectivity matrix

$$\begin{pmatrix} \frac{d}{dt}(s_l^{(n)}(t)) \\ \frac{d}{dt}(x_l(t)) \\ \frac{d}{dt}(y_l(t)) \end{pmatrix} = \begin{pmatrix} -w_l y_l(t) + \sigma \mathcal{N}(0, 1) + \sum_{l' \neq l} \epsilon_{ll'}^{(n)}(s_{l'}^{(n)}(t) - s_l^{(n)}(t)) \\ w_{l'} s_l^{(n)}(t) + \alpha x_l(t) \\ b + (s_l^{(n)}(t) - c) y_l(t) \end{pmatrix}$$

For $n \in \{1, ..., 30\}$ we have $\epsilon_{31}^{(n)} = 0$, For $n \in \{31, ..., 60\}$ we have $\epsilon_{23}^{(n)} = 0$, For $n \in \{61, ..., 90\}$ we have $\epsilon_{21}^{(n)} = 0$, Else $\epsilon_{ll'}^{(n)}$ takes values from a uniform distribution [0.05, 0.3].

Roessler model

Roessler Model

Ideal functional connectivity matrix

pPLV on the Roessler model

pPLV vs partial correlation

• The regularized pPLV corresponds to minimize this criteria :

$$\underset{\{\Omega^{(1)},\ldots,\Omega^{(N)}\}\in\mathbb{S}_{++}^{p}}{\operatorname{argmin}} \sum_{n=1}^{N} I\left(\Omega^{(n)}, \mathbb{R}^{(n)}\right) + \lambda \mid\mid \Omega^{(n)}\mid\mid_{od,1} + \gamma \sum_{m=2}^{N} g(\Omega^{(m)} - \Omega^{(m-1)}),$$

Then :

$$\boldsymbol{Q}_{ll'} = \frac{\mid \boldsymbol{\Omega}_{ll'} \mid}{\sqrt{\boldsymbol{\Omega}_{ll} \boldsymbol{\Omega}_{l'l'}}}$$

• The regularized partial correlation corresponds to minimize this criteria :

$$\underset{\{\Theta^{(1)},\ldots,\Theta^{(N)}\}\in\mathbb{S}_{++}^{p}}{\operatorname{argmin}} \sum_{n=1}^{N} I\left(\Theta^{(n)}, \mathbf{C}^{(n)}\right) + \lambda' \mid\mid \Theta^{(n)} \mid\mid_{od,1} + \gamma' \sum_{m=2}^{N} g(\Theta^{(m)} - \Theta^{(m-1)})$$
Then :

$$\check{\rho}_{II'} = \frac{|\Theta_{II'}|}{\sqrt{\Theta_{II}\Theta_{I'I'}}}$$

Application

Comparing pPLV and partial correlation

Comparison of different methods

Effect of the amplitude

A multiplication with different constant amplitudes modifies the signals

Effect of the amplitude modulation

Amplitude modulations are performed to modify the signals

Different lags are added to modify the signals

Real functional connectivity matrix

Application

Illustration on a real iEEG dataset

April 15, 2020 26 / 29

Real functional connectivity matrix

Conclusion

During this this talk we considered :

- Inference of conditionally independent dynamical graph from pPLV
- Selection of relevant regularizations to process iEEG datasets
- Application on a model and a real iEEG multivariate signal.

Follow-up of this work :

- Investegating parametric regularized pPLV assuming the signals follow a multivariate Gaussian distribution
- Automatic selection of parameters

Thank you for your attention !