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Context



Data from epileptic patient

Figure 1: The patient stays one

week at the hospital to record

several seizures

1
.

Figure 2: intracranial EEG

electrodes implemented in the

brain

2
.

1Iida, K., & Otsubo, H. (2017). Stereoelectroencephalography: indication and efficacy. Neurologia
medico-chirurgica, 57(8), 375-385..
2https://consultqd.clevelandclinic.org/turning-to-seeg-for-pediatric-patients-with-refractory-epilepsy/
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General problem of my thesis

Figure 3: Example of a multivariate

signal from the recording of a

seizure

Figure 4: Converting multivariate

signal to a graph

1
,

2
.

1Dong et Al. (2019). Learning graphs from data: A signal representation perspective. IEEE Signal Processing
Magazine, 36(3), 44-63..
2Richiardi et Al.(2009). Machine learning with brain graphs: predictive modeling approaches for functional

imaging in systems neuroscience. IEEE Signal Processing Magazine, 30(3), 58-70.
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What is a connection ? Functional connectivity
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Model of 4 signals with temporal synchrony Corresponding functional connectivity as a

function of time



Correlation and partial correlation 1/2
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Example of graphical model

s1(t) = ⌘1(t),

s2(t) = 0.8s1(t) + 0.2⌘2(t),

s3(t) = 0.8s1(t) + 0.2⌘3(t),

⌘(t) is a realisation from a Gaussian

distribution

Correlation

Partial correlation



Correlation and partial correlation 2/2
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Example of graphical model

s4(t) =0.4s5(t) + 0.4s6(t) + 0.2⌘4(t),

s5(t) =⌘5(t),

s6(t) =⌘6(t),

⌘(t) is a realisation from a Gaussian

distribution

Correlation

Partial correlation



Precision matrix

Considering L real centred signals s

l

(t), l 2 1, ..., L, the empirical

covariance between the signal l and l

0
is noted :

c

ll

0 =
TX

t=1

s

l

(t)s 0
l

(t)

C is the empirical covariance matrix and the correlation index:

⇢
ll

0 =
c

ll

0
p
c

ll

c

l

0
l

0

We call ⇥ = C

�1

the precision matrix, it can be shown that the partial

correlation index, noted ⇢̌, between different signal l and l

0
is

1

:

⇢̌
ll

0 = � ✓
ll

0
p
✓
ll

✓
l

0
l

0

1Whittaker, J. (2009). Graphical models in applied multivariate statistics. Wiley Publishing.
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Graphical lasso

Graphical lasso aims to add regularizations on the precision matrix

assuming signal follows a multivariate Gaussian distribution:

p(s,⇥) =
1

2⇡
p
det(⇥�1)

e

� 1
2 st⇥s e

��Reg(⇥)
R
e

��Reg(⇥) d⇥

minimizing the regularized negative log-likelihood function gives

1

:

argmin
⇥2Sp++

� ln(det(⇥)) + Tr (⇥C) + �Reg(⇥)

The usually performed regularisation corresponds to impose sparsity on

the precision matrix Reg(⇥) =|| ⇥ ||
od,1

1Friedman et Al. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9(3),
432-441.
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The phase locking value measure

• We note the analytic representation of the signal s

l

(t):

z

l

(t) = a

l

(t)e i�l

(t)

• a

l

(t) the instantaneous amplitude of the signal s

l

(t).

• �
l

(t) the instantaneous phase of the signal s

l

(t).

• The Phase Locking Value (PLV)

1

between signals l and l

0
is defined as:

P

ll

0 =
1

T

���
TX

t=1

e

i�
l

(t)(e i�l

0 (t))⇤
���=

1

T

���
TX

t=1

e

i(�
l

(t)��
l

0 (t))
���

• We propose a regularized and partial extension of the Phase locking

value index.

1JLachaux, J. P., Rodriguez, E., Martinerie, J., & Varela, F. J. (1999). Measuring phase synchrony in brain
signals. Human brain mapping, 8(4), 194-208.
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Regularized partial Phase

Locking Value



Non parametric partial PLV

A non parametric estimate of the PLV can be computed, first we consider

the pairwise phase synchrony interraction:

R

ll

0 =
1

T

TX

t=1

e

i(�
l

(t)��
l

0 (t))

R corresponds to the covariance matrix C between phase signals e

i�
l

(t)
,

8l 2 1, ..., L. PLV index is :

P

ll

0 =| R
ll

0 | (1)

Calling ⌦ = R

�1

the inverse of the pairwise phase synchrony matrix. a

partial PLV index (pPLV), noted Q, can be introduced

1

:

Q

ll

0 =
| ⌦

ll

0 |p
⌦

ll

⌦
l

0
l

0

1Schelter et Al. (2006). Partial phase synchronization for multivariate synchronizing systems. Physical review
letters, 96(20), 208103.
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Regularized pPLV

We add regularization on the pPLV function minimizing :

argmin
⌦2Sp++

� ln(det(⌦)) + Tr (⌦R) + �Reg(⌦)

Even if the phase signal doesn’t follow a multivariate gaussian

distribution, this cost function is relevant since :

⌅ The pairwise synchony matrix R is positive definite, thus the cost

function is convex.

⌅ If � = 0, the minimizer will coincide with ⌦ = R

�1

.
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Time series 1/4
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Time series 2/4

Regularized partial Phase Locking Value Addition regularizations on the pPLV 1/2 April 15, 2020 12 / 29



Time series 3/4
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Time series 3/4
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Time varying graphical lasso (TVGL)

The Sparse and the temporal regularization are added to the Graphical

lasso criteria:

argmin
{⌦(1),...,⌦(N)}2Sp++

NX

n=1

l

⇣
⌦(n),R(n)

⌘
+ � || ⌦(n) ||

od,1 + �
NX

m=2

g(⌦(m) � ⌦(m�1)),

Where l

�
⌦(n),R(n)

�
= �ln(det(⌦(n))) + Tr

�
⌦(n)

R

(n)
�

g(X) =
P

N

i=1

|| x
i

(t) ||2
F

TVGL

1

is convex, can be implemented with ADMM

1

, forward-backward

2

.

1Hallac et Al. (2017, August). Network inference via the time-varying graphical lasso. In Proceedings of the 23rd

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 205-213). ACM. 2Tomasi
et Al. (2018, August). Forward-Backward Splitting for Time-Varying Graphical Models. In International
Conference on Probabilistic Graphical Models (pp. 475-486).
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Application



Roessler model

0

B@

d

dt

(s(n)
l

(t))
d

dt

(x
l

(t))
d

dt

(y
l

(t))

1

CA =

0

B@
�w

l

y

l

(t) + �N (0, 1) +
P

l

0 6=l

✏(n)
ll

0 (s
(n)
l

0 (t)� s

(n)
l

(t))

w

l

0
s

(n)
l

(t) + ↵x
l

(t)

b + (s(n)
l

(t)� c)y
l

(t)

1

CA

For n 2 {1, ..., 30} we have ✏(n)
31

= 0,

For n 2 {31, ..., 60} we have ✏(n)
23

= 0,

For n 2 {61, ..., 90} we have ✏(n)
21

= 0,

Else ✏(n)
ll

0 takes values from a uniform distribution [0.05, 0.3].
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Ideal functional connectivity matrix



Roessler model

Roessler Model
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Ideal functional connectivity matrix



pPLV on the Roessler model

argmin
{⌦(1),...,⌦(N)}2Sp++

NX

n=1

l

⇣
⌦(n),R(n)

⌘
, Q

ll

0(0, 0) =
| ⌦

ll

0 |p
⌦

ll

⌦
l

0
l

0
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pPLV on the Roessler model

argmin
{⌦(1),...,⌦(N)}2Sp++

NX

n=1

l

⇣
⌦(n),R(n)

⌘
+ � || ⌦(n) ||

od,1,
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pPLV on the Roessler model

argmin
{⌦(1),...,⌦(N)}2Sp++

NX

n=1

l

⇣
⌦(n),R(n)

⌘
+ � || ⌦(n) ||

od,1 + �
NX

m=2

g(⌦(m) � ⌦(m�1)),
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pPLV vs partial correlation

• The regularized pPLV corresponds to minimize this criteria :

argmin
{⌦(1),...,⌦(N)}2Sp++

NX

n=1

l

⇣
⌦(n),R(n)

⌘
+ � || ⌦(n) ||

od,1 + �
NX

m=2

g(⌦(m) � ⌦(m�1)),

Then :

Q

ll

0 =
| ⌦

ll

0 |p
⌦

ll

⌦
l

0
l

0

• The regularized partial correlation corresponds to minimize this criteria :

argmin
{⇥(1),...,⇥(N)}2Sp++

NX

n=1

l

⇣
⇥(n),C(n)

⌘
+ �0 || ⇥(n) ||

od,1 + �0
NX

m=2

g(⇥(m) �⇥(m�1)),

Then :

⇢̌
ll

0 =
| ⇥

ll

0 |p
⇥

ll

⇥
l

0
l

0
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Comparison of different methods
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Effect of the amplitude

A multiplication with different constant amplitudes modifies the signals
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Effect of the amplitude modulation

Amplitude modulations are performed to modify the signals
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Effect of the lag

Different lags are added to modify the signals
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Real functional connectivity matrix
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Real functional connectivity matrix
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Conclusion



During this this talk we considered :

⌅ Inference of conditionally independent dynamical graph from pPLV

⌅ Selection of relevant regularizations to process iEEG datasets

⌅ Application on a model and a real iEEG multivariate signal.

Follow-up of this work :

⌅ Investegating parametric regularized pPLV assuming the signals

follow a multivariate Gaussian distribution

⌅ Automatic selection of parameters
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Thank you for your attention !

Conclusion April 15, 2020 29 / 29


	Context
	Introduction

	Regularized partial Phase Locking Value
	Partial PLV
	Addition regularizations on the pPLV 1/2
	A new functional connectivity measure

	Application
	Roessler model
	The interest of the chosen regularizations
	Comparing pPLV and partial correlation
	Illustration on a real iEEG dataset

	Conclusion

