Regularized partial phase synchrony index applied to dynamical functional connectivity estimation

Gaëtan Frusque

Paulo Gonçalves, Pierre Borgnat and Julien Jung

ENS de Lyon, LIP, CNRS gaetan.frusque@ens-lyon.fr

Ínría

Context

Data from epileptic patient

Figure 1: The patient stays one week at the hospital to record several seizures ${ }^{1}$.

Figure 2: intracranial EEG electrodes implemented in the brain ${ }^{2}$.

[^0]
General problem of my thesis

Figure 4: Converting multivariate signal to a graph ${ }^{1},{ }^{2}$.

Figure 3: Example of a multivariate signal from the recording of a seizure

[^1]
What is a connection ? Functional connectivity

Model of 4 signals with temporal synchrony

Corresponding functional connectivity as a function of time

2

$\mathrm{n}=\mathrm{n}^{\prime}$
${ }^{3}$

Correlation and partial correlation $1 / 2$

Correlation
Example of graphical model

$$
\begin{aligned}
& s_{1}(t)=\eta_{1}(t), \\
& s_{2}(t)=0.8 s_{1}(t)+0.2 \eta_{2}(t), \\
& s_{3}(t)=0.8 s_{1}(t)+0.2 \eta_{3}(t),
\end{aligned}
$$

$\eta(t)$ is a realisation from a Gaussian distribution

Partial correlation

Correlation and partial correlation $2 / 2$

Example of graphical model

$$
\begin{aligned}
& s_{4}(t)=0.4 s_{5}(t)+0.4 s_{6}(t)+0.2 \eta_{4}(t), \\
& s_{5}(t)=\eta_{5}(t), \\
& s_{6}(t)=\eta_{6}(t),
\end{aligned}
$$

$\eta(t)$ is a realisation from a Gaussian distribution

Correlation

Partial correlation

Precision matrix

Considering L real centred signals $s_{l}(t), I \in 1, \ldots, L$, the empirical covariance between the signal $/$ and I^{\prime} is noted :

$$
c_{l / \prime}=\sum_{t=1}^{T} s_{l}(t) s_{l}^{\prime}(t)
$$

C is the empirical covariance matrix and the correlation index:

$$
\rho_{\| I^{\prime}}=\frac{c_{\| I^{\prime}}}{\sqrt{c_{\| I} c_{I^{\prime} \|^{\prime}}}}
$$

We call $\Theta=\mathbf{C}^{-1}$ the precision matrix, it can be shown that the partial correlation index, noted $\check{\rho}$, between different signal I and I^{\prime} is ${ }^{1}$:

$$
\check{\rho}_{\|^{\prime}}=-\frac{\theta_{\|^{\prime}}}{\sqrt{\theta_{\| \prime} \theta_{l^{\prime} I^{\prime}}}}
$$

[^2]
Graphical lasso

Graphical lasso aims to add regularizations on the precision matrix assuming signal follows a multivariate Gaussian distribution:

$$
p(\mathbf{s}, \Theta)=\frac{1}{2 \pi \sqrt{\operatorname{det}\left(\Theta^{-1}\right)}} e^{-\frac{1}{2} \mathbf{s}^{t} \Theta \mathbf{s}} \frac{e^{-\lambda \operatorname{Reg}(\Theta)}}{\int e^{-\lambda \operatorname{Reg}(\Theta)} \mathrm{d} \Theta}
$$

minimizing the regularized negative log-likelihood function gives ${ }^{1}$:

$$
\underset{\Theta \in \mathbb{S}_{++}^{p}}{\operatorname{argmin}}-\ln (\operatorname{det}(\Theta))+\operatorname{Tr}(\Theta \mathbf{C})+\lambda \operatorname{Reg}(\Theta)
$$

The usually performed regularisation corresponds to impose sparsity on the precision matrix $\operatorname{Reg}(\Theta)=\|\Theta\|_{o d, 1}$

[^3]
The phase locking value measure

- We note the analytic representation of the signal $s_{l}(t)$:

$$
z_{l}(t)=a_{l}(t) e^{i \phi_{l}(t)}
$$

- $a_{l}(t)$ the instantaneous amplitude of the signal $s_{l}(t)$.
- $\phi_{l}(t)$ the instantaneous phase of the signal $s_{l}(t)$.
- The Phase Locking Value (PLV) ${ }^{1}$ between signals I and I^{\prime} is defined as:

$$
P_{I I^{\prime}}=\frac{1}{T}\left|\sum_{t=1}^{T} e^{i \phi_{l}(t)}\left(e^{i \phi_{\prime^{\prime}}(t)}\right)^{*}\right|=\frac{1}{T}\left|\sum_{t=1}^{T} e^{i\left(\phi_{l}(t)-\phi_{\prime \prime}(t)\right)}\right|
$$

- We propose a regularized and partial extension of the Phase locking value index.

[^4]
Regularized partial Phase Locking Value

Non parametric partial PLV

A non parametric estimate of the PLV can be computed, first we consider the pairwise phase synchrony interraction:

$$
R_{\|^{\prime}}=\frac{1}{T} \sum_{t=1}^{T} e^{i\left(\phi_{l}(t)-\phi_{\prime^{\prime}}(t)\right)}
$$

\mathbf{R} corresponds to the covariance matrix \mathbf{C} between phase signals $e^{i \phi_{1}(t)}$, $\forall I \in 1, \ldots, L$. PLV index is :

$$
\begin{equation*}
P_{I I^{\prime}}=\left|R_{I / \prime}\right| \tag{1}
\end{equation*}
$$

Calling $\Omega=\mathbf{R}^{-1}$ the inverse of the pairwise phase synchrony matrix. a partial PLV index (pPLV), noted Q, can be introduced ${ }^{1}$:

$$
Q_{\|^{\prime}}=\frac{\left|\Omega_{\|^{\prime}}\right|}{\sqrt{\Omega_{\|} \Omega_{\|^{\prime} I^{\prime}}}}
$$

[^5]
Regularized pPLV

We add regularization on the pPLV function minimizing :

$$
\underset{\Omega \in \mathbb{S}_{++}^{p}}{\operatorname{argmin}}-\ln (\operatorname{det}(\Omega))+\operatorname{Tr}(\Omega \mathbf{R})+\lambda \operatorname{Reg}(\Omega)
$$

Even if the phase signal doesn't follow a multivariate gaussian distribution, this cost function is relevant since :

- The pairwise synchony matrix \mathbf{R} is positive definite, thus the cost function is convex.
- If $\lambda=0$, the minimizer will coincide with $\Omega=\mathbf{R}^{-1}$.

Time series $1 / 4$

Time series 2/4

Time series 3/4

Time series 3/4

Time varying graphical lasso (TVGL)

The Sparse and the temporal regularization are added to the Graphical lasso criteria:

Where $I\left(\Omega^{(n)}, \mathbf{R}^{(n)}\right)=-\ln \left(\operatorname{det}\left(\Omega^{(n)}\right)\right)+\operatorname{Tr}\left(\Omega^{(n)} \mathbf{R}^{(n)}\right)$
$g(\mathbf{X})=\sum_{i=1}^{N}\left\|x_{i}(t)\right\|_{F}^{2}$
TVGL ${ }^{1}$ is convex, can be implemented with ADMM ${ }^{1}$, forward-backward 2.

[^6]
Application

Roessler model

Ideal functional connectivity matrix

$$
\left(\begin{array}{c}
\frac{d}{d t}\left(s_{I}^{(n)}(t)\right) \\
\frac{d}{d t}\left(x_{I}(t)\right) \\
\frac{d}{d t}\left(y_{I}(t)\right)
\end{array}\right)=\left(\begin{array}{c}
-w_{I} y_{I}(t)+\sigma \mathcal{N}(0,1)+\sum_{I^{\prime} \neq I} \epsilon_{I I^{\prime}}^{(n)}\left(s_{I^{\prime}}^{(n)}(t)-s_{I}^{(n)}(t)\right) \\
w_{I^{\prime}} s_{I}^{(n)}(t)+\alpha x_{I}(t) \\
b+\left(s_{I}^{(n)}(t)-c\right) y_{I}(t)
\end{array}\right)
$$

For $n \in\{1, \ldots, 30\}$ we have $\epsilon_{31}^{(n)}=0$,
For $n \in\{31, \ldots, 60\}$ we have $\epsilon_{23}^{(n)}=0$,
For $n \in\{61, \ldots, 90\}$ we have $\epsilon_{21}^{(n)}=0$,
Else $\epsilon_{\| \prime \prime}^{(n)}$ takes values from a uniform distribution $[0.05,0.3]$.

Roessler model

Ideal functional connectivity matrix
Roessler Model
Example of the three modelised signals for $n \in\{1, \ldots, 30\}$

pPLV on the Roessler model

$$
\underset{\left\{\Omega^{(1)}, \ldots, \Omega^{(N)}\right\} \in \mathbb{S}_{++}^{p}}{\operatorname{argmin}} \sum_{n=1}^{N} I\left(\Omega^{(n)}, \mathbf{R}^{(n)}\right), \quad Q_{\| I^{\prime}}(0,0)=\frac{\left|\Omega_{\|^{\prime}}\right|}{\sqrt{\Omega_{\|} \Omega_{\prime^{\prime \prime}}}}
$$

pPLV on the Roessler model

pPLV on the Roessler model

$\mathrm{Q}(\lambda, \gamma)$

pPLV vs partial correlation

- The regularized pPLV corresponds to minimize this criteria:
$\underset{\left\{\Omega^{(1)}, \ldots, \Omega^{(N)}\right\} \in \mathbb{S}_{++}^{p}}{\operatorname{argmin}} \sum_{n=1}^{N} I\left(\Omega^{(n)}, \mathbf{R}^{(n)}\right)+\lambda\left\|\Omega^{(n)}\right\|_{o d, 1}+\gamma \sum_{m=2}^{N} g\left(\Omega^{(m)}-\Omega^{(m-1)}\right)$,
Then :

$$
Q_{\|^{\prime}}=\frac{\left|\Omega_{\|^{\prime}}\right|}{\sqrt{\Omega_{\|} \Omega_{/^{\prime} I^{\prime}}}}
$$

- The regularized partial correlation corresponds to minimize this criteria :
$\underset{\left\{\Theta^{(1)}, \ldots, \Theta^{(N)}\right\} \in \mathbb{S}_{++}^{p}}{\operatorname{argmin}} \sum_{n=1}^{N} I\left(\Theta^{(n)}, \mathbf{C}^{(n)}\right)+\lambda^{\prime}\left\|\Theta^{(n)}\right\|_{\text {od }, 1}+\gamma^{\prime} \sum_{m=2}^{N} g\left(\Theta^{(m)}-\Theta^{(m-1)}\right)$
Then:

$$
\check{\rho}_{\|^{\prime}}=\frac{\left|\Theta_{\| \prime^{\prime}}\right|}{\sqrt{\Theta_{\| /} \Theta_{\prime^{\prime \prime}}}}
$$

Comparison of different methods

Effect of the amplitude

A multiplication with different constant amplitudes modifies the signals

Effect of the amplitude modulation

Amplitude modulations are performed to modify the signals

Effect of the lag

Different lags are added to modify the signals

Real functional connectivity matrix

Real functional connectivity matrix

Conclusion

During this this talk we considered :

- Inference of conditionally independent dynamical graph from pPLV

■ Selection of relevant regularizations to process iEEG datasets

- Application on a model and a real iEEG multivariate signal.

Follow-up of this work:

- Investegating parametric regularized pPLV assuming the signals follow a multivariate Gaussian distribution
- Automatic selection of parameters

Thank you for your attention!

[^0]: ${ }^{1}$ lida, K., \& Otsubo, H. (2017). Stereoelectroencephalography: indication and efficacy. Neurologia medico-chirurgica, 57(8), 375-385..
 ${ }^{2}$ https://consultqd.clevelandclinic.org/turning-to-seeg-for-pediatric-patients-with-refractory-epilepsy/

[^1]: ${ }^{1}$ Dong et Al. (2019). Learning graphs from data: A signal representation perspective. IEEE Signal Processing Magazine, 36(3), 44-63..
 ${ }^{2}$ Richiardi et Al.(2009). Machine learning with brain graphs: predictive modeling approaches for functional imaging in systems neuroscience. IEEE Signal Processing Magazine, 30(3), 58-70.

[^2]: ${ }^{1}$ Whittaker, J. (2009). Graphical models in applied multivariate statistics. Wiley Publishing.

[^3]: ${ }^{1}$ Friedman et Al. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9(3), 432-441.

[^4]: ${ }^{1}$ JLachaux, J. P., Rodriguez, E., Martinerie, J., \& Varela, F. J. (1999). Measuring phase synchrony in brain signals. Human brain mapping, 8(4), 194-208.

[^5]: ${ }^{1}$ Schelter et Al. (2006). Partial phase synchronization for multivariate synchronizing systems. Physical review letters, 96(20), 208103.

[^6]: ${ }^{1}$ Hallac et AI. (2017, August). Network inference via the time-varying graphical lasso. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 205-213). ACM. ${ }^{2}$ Tomasi et Al. (2018, August). Forward-Backward Splitting for Time-Varying Graphical Models. In International Conference on Probabilistic Graphical Models (pp. 475-486).

