

EXTENDED CYCLIC COORDINATE DESCENT FOR ROBUST ROW-SPARSE SIGNAL RECONSTRUCTION IN THE PRESENCE OF OUTLIERS

Huiping Huang^{\star \ddagger}, Hing Cheung So^{\dagger}, Abdelhak M. Zoubir^{\star \ddagger}

* Signal Processing Group, Technische Universität Darmstadt [†]Graduate School of Computational Engineering, Technische Universität Darmstadt [†]Department of Electrical Engineering, City University of Hong Kong

ICASSP 2020

Content

Introduction

Proposed Approach

Application to Source Localization

Summary and Outlook

TECHNISCHE UNIVERSITÄT DARMSTADT

Overview

Introduction

Proposed Approach

Application to Source Localization

Summary and Outlook

Introduction Sparse Signal Reconstruction (1)

 A sparse signal can be reliably recovered from a reduced set of measurements, under certain conditions, e.g., RIP.

Introduction Sparse Signal Reconstruction (1)

- A sparse signal can be reliably recovered from a reduced set of measurements, under certain conditions, e.g., RIP.
- A sparse signal can carry useful information, such as directions of sources.

Introduction Sparse Signal Reconstruction (1)

- A sparse signal can be reliably recovered from a reduced set of measurements, under certain conditions, e.g., RIP.
- A sparse signal can carry useful information, such as directions of sources.
- Applications

(b) Through-the-wall radar 3D reconstruction

(c) Sonar imaging

Introduction Sparse Signal Reconstruction (2)

Data model:

$$y(t) = As(t) + e(t), t = 1, 2, ..., T$$

Introduction Sparse Signal Reconstruction (2)

Data model:

$$y(t) = As(t) + e(t), t = 1, 2, ..., T$$

- $\mathbf{y}(t) \in \mathbb{C}^N$: Measurement data
- $\mathbf{A} \in \mathbb{C}^{N \times P}$: Predictor dictionary, N < P
- **s**(t) $\in \mathbb{C}^{P}$: Signal vector
- $\mathbf{e}(t) \in \mathbb{C}^N$: Gaussian noise

Introduction Sparse Signal Reconstruction (3)

Data model in matrix form:

$$\mathbf{Y} = \mathbf{AS} + \mathbf{E}$$

where
$$\mathbf{Y} = [\mathbf{y}(1), \mathbf{y}(2), \cdots, \mathbf{y}(T)], \mathbf{S} = [\mathbf{s}(1), \mathbf{s}(2), \cdots, \mathbf{s}(T)], \mathbf{E} = [\mathbf{e}(1), \mathbf{e}(2), \cdots, \mathbf{e}(T)]$$

Introduction Sparse Signal Reconstruction (3)

Data model in matrix form:

$$\mathbf{Y} = \mathbf{AS} + \mathbf{E}$$

where
$$\mathbf{Y} = [\mathbf{y}(1), \mathbf{y}(2), \cdots, \mathbf{y}(T)], \mathbf{S} = [\mathbf{s}(1), \mathbf{s}(2), \cdots, \mathbf{s}(T)], \mathbf{E} = [\mathbf{e}(1), \mathbf{e}(2), \cdots, \mathbf{e}(T)]$$

Sparse signal reconstruction using LASSO:

$$\label{eq:min_s_s} \min_{\boldsymbol{S}} \ \frac{1}{2} \|\boldsymbol{Y} - \boldsymbol{A}\boldsymbol{S}\|_{F}^{2} + \lambda \|\boldsymbol{S}\|_{2,1}$$

Introduction Non-Gaussian Heavy-Tailed Noise (1)

Data model without outliers

$$\mathbf{y}(t) = \mathbf{As}(t) + \mathbf{e}(t)$$

 $\mathbf{e}(t) \in \mathbb{C}^N$: Gaussian noise

Introduction Non-Gaussian Heavy-Tailed Noise (1)

Data model without outliers

$$\mathbf{y}(t) = \mathbf{As}(t) + \mathbf{e}(t)$$

 $\mathbf{e}(t) \in \mathbb{C}^N$: Gaussian noise

Data model with outliers

$$\mathbf{y}(t) = \mathbf{As}(t) + \mathbf{q}(t) \circ \mathbf{e}(t)$$

where the symbol \circ stands for the Hadamard product operator,

Introduction Non-Gaussian Heavy-Tailed Noise (1)

Data model without outliers

$$\mathbf{y}(t) = \mathbf{As}(t) + \mathbf{e}(t)$$

 $\mathbf{e}(t) \in \mathbb{C}^N$: Gaussian noise

Data model with outliers

$$\mathbf{y}(t) = \mathbf{As}(t) + \mathbf{q}(t) \circ \mathbf{e}(t)$$

where the symbol \circ stands for the Hadamard product operator, $\mathbf{q}(t) \in \mathbb{R}^N$: Weight vector

 $\begin{cases} q_i(t) \gg 1 : \text{Outlier} \\ q_i(t) = 1 : \text{Non-outlier} \end{cases}$

where $q_i(t)$ is the *i*-th entry of $\mathbf{q}(t)$

Introduction Non-Gaussian Heavy-Tailed Noise (2)

Data model with outliers in matrix form:

 $\textbf{Y} = \textbf{AS} + \textbf{Q} \circ \textbf{E}$

where $\mathbf{Q} = [\mathbf{q}(1), \mathbf{q}(2), \cdots, \mathbf{q}(T)]$

Introduction Non-Gaussian Heavy-Tailed Noise (2)

Data model with outliers in matrix form:

 $\textbf{Y} = \textbf{AS} + \textbf{Q} \circ \textbf{E}$

where
$$\mathbf{Q} = [\mathbf{q}(1), \mathbf{q}(2), \cdots, \mathbf{q}(T)]$$

• The problem to be addressed is as follows:

With known **Y** and **A**, recover the row-sparse matrix **S**.

TECHNISCHE UNIVERSITÄT DARMSTADT

Overview

Introduction

Proposed Approach

Application to Source Localization

Summary and Outlook

Proposed Approach Proposed Minimization Problem (1)

$$\min_{\boldsymbol{W},\boldsymbol{S}} \ \frac{1}{2} \|\boldsymbol{W} \circ (\boldsymbol{Y} - \boldsymbol{A}\boldsymbol{S})\|_{F}^{2} + \lambda_{1} \|\operatorname{vec}(\boldsymbol{W}_{-1})\|_{1} + \lambda_{2} \|\boldsymbol{S}\|_{2,1}$$

$$\min_{\boldsymbol{W},\boldsymbol{S}} \ \frac{1}{2} \|\boldsymbol{W} \circ (\boldsymbol{Y} - \boldsymbol{A}\boldsymbol{S})\|_{\mathcal{F}}^2 + \lambda_1 \|\operatorname{vec}(\boldsymbol{W}_{-1})\|_1 + \lambda_2 \|\boldsymbol{S}\|_{2,1}$$

The first term: W is used to down-weight the the outliers while keeping the remaining observations unchanged

 $0 < W_{ij} < 1$ for outliers, $W_{ij} = 1$ for non-outliers

$$\min_{\boldsymbol{W},\boldsymbol{S}} \ \frac{1}{2} \|\boldsymbol{W} \circ (\boldsymbol{Y} - \boldsymbol{A}\boldsymbol{S})\|_{F}^{2} + \lambda_{1} \|\operatorname{vec}(\boldsymbol{W}_{-1})\|_{1} + \lambda_{2} \|\boldsymbol{S}\|_{2,1}$$

The first term: W is used to down-weight the the outliers while keeping the remaining observations unchanged

 $0 < W_{ij} < 1$ for outliers, $W_{ij} = 1$ for non-outliers

• The second term: Impose sparsity of $W_{-1} = W - \mathbf{1}_{N \times T}$

$$\min_{\boldsymbol{W},\boldsymbol{S}} \ \frac{1}{2} \|\boldsymbol{W} \circ (\boldsymbol{Y} - \boldsymbol{A}\boldsymbol{S})\|_{F}^{2} + \lambda_{1} \|\operatorname{vec}(\boldsymbol{W}_{-1})\|_{1} + \lambda_{2} \|\boldsymbol{S}\|_{2,1}$$

The first term: W is used to down-weight the the outliers while keeping the remaining observations unchanged

 $0 < W_{ij} < 1$ for outliers, $W_{ij} = 1$ for non-outliers

- The second term: Impose sparsity of $W_{-1} = W \mathbf{1}_{N \times T}$
- The third term: Impose row-sparsity of S

Proposed Approach Proposed Minimization Problem (2)

$$\min_{\mathbf{W},\mathbf{S}} \frac{1}{2} \|\mathbf{W} \circ (\mathbf{Y} - \mathbf{AS})\|_F^2 + \lambda_1 \|\operatorname{vec}(\mathbf{W}_{-1})\|_1 + \lambda_2 \|\mathbf{S}\|_{2,1}$$

LASSO-type problem, cyclic coordinate descent (CCD)

Proposed Approach Proposed Minimization Problem (2)

$$\min_{\mathbf{W},\mathbf{S}} \quad \frac{1}{2} \|\mathbf{W} \circ (\mathbf{Y} - \mathbf{AS})\|_F^2 + \lambda_1 \|\operatorname{vec}(\mathbf{W}_{-1})\|_1 + \lambda_2 \|\mathbf{S}\|_{2,1}$$

- LASSO-type problem, cyclic coordinate descent (CCD)
- Biconvex with respect to W and S

< 🗗 >

$$\min_{\mathbf{W},\mathbf{S}} \frac{1}{2} \|\mathbf{W} \circ (\mathbf{Y} - \mathbf{AS})\|_F^2 + \lambda_1 \|\operatorname{vec}(\mathbf{W}_{-1})\|_1 + \lambda_2 \|\mathbf{S}\|_{2,1}$$

Comparison with the one using Huber's loss function

$$\min_{\mathbf{S}} \|\rho_{\mathrm{H}}(\mathbf{Y} - \mathbf{AS})\|_{F}^{2} + \mu \|\mathbf{S}\|_{2,1}$$

where

$$\rho_{\mathsf{H}}(x) = \begin{cases} |x|^2, & \text{for } |x| \leq c \text{ (i.e., non-outliers)} \\ 2c|x| - c^2, & \text{for } |x| > c \text{ (i.e., outliers)} \end{cases}$$

Proposed Approach Remarks (2)

$$\min_{\mathbf{W},\mathbf{S}} \quad \frac{1}{2} \|\mathbf{W} \circ (\mathbf{Y} - \mathbf{AS})\|_F^2 + \lambda_1 \|\operatorname{vec}(\mathbf{W}_{-1})\|_1 + \lambda_2 \|\mathbf{S}\|_{2,1}$$

Comparison with the original problem without outliers

$$\min_{\mathbf{S}} \quad \frac{1}{2} \|\mathbf{Y} - \mathbf{AS}\|_F^2 + \lambda \|\mathbf{S}\|_{2,1}$$

Proposed Approach Extended Cyclic Coordinate Descent Algorithm

$$\begin{array}{|c|c|c|c|c|} \min & \frac{1}{2} \| \mathbf{W} \circ (\mathbf{Y} - \mathbf{AS}) \|_F^2 + \lambda_1 \| \operatorname{vec}(\mathbf{W}_{-1}) \|_1 + \lambda_2 \| \mathbf{S} \|_{2,1} \end{array}$$

$$\min_{\mathbf{W},\mathbf{S}} \quad \frac{1}{2} \|\mathbf{W} \circ (\mathbf{Y} - \mathbf{AS})\|_{F}^{2} + \lambda_{1} \|\operatorname{vec}(\mathbf{W}_{-1})\|_{1} + \lambda_{2} \|\mathbf{S}\|_{2,1}$$

Step 1: Update W_{ij} by fixing **S** and W_{nt} (n = 1, ..., N and $n \neq i$, t = 1, ..., T and $t \neq j$)

$$\min_{\boldsymbol{W},\boldsymbol{S}} \ \frac{1}{2} \|\boldsymbol{W} \circ (\boldsymbol{Y} - \boldsymbol{A}\boldsymbol{S})\|_{F}^{2} + \lambda_{1} \|\operatorname{vec}(\boldsymbol{W}_{-1})\|_{1} + \lambda_{2} \|\boldsymbol{S}\|_{2,1}$$

- Step 1: Update W_{ij} by fixing **S** and W_{nt} (n = 1, ..., N and $n \neq i$, t = 1, ..., T and $t \neq j$)
- Step 2: Update S_{ij} by fixing **W** and S_{pt} (p = 1, ..., P and $p \neq i$, t = 1, ..., T and $t \neq j$)

$$\min_{\boldsymbol{W},\boldsymbol{S}} \ \frac{1}{2} \|\boldsymbol{W} \circ (\boldsymbol{Y} - \boldsymbol{A}\boldsymbol{S})\|_{F}^{2} + \lambda_{1} \|\operatorname{vec}(\boldsymbol{W}_{-1})\|_{1} + \lambda_{2} \|\boldsymbol{S}\|_{2,1}$$

- Step 1: Update W_{ij} by fixing **S** and W_{nt} (n = 1, ..., N and $n \neq i$, t = 1, ..., T and $t \neq j$)
- Step 2: Update S_{ij} by fixing **W** and S_{pt} (p = 1, ..., P and $p \neq i$, t = 1, ..., T and $t \neq j$)
- Step 3: Cyclically repeating Steps 1 and 2 until convergence

< 🗗 >

$$\min_{\boldsymbol{W},\boldsymbol{S}} \quad \frac{1}{2} \|\boldsymbol{W} \circ (\boldsymbol{Y} - \boldsymbol{A}\boldsymbol{S})\|_{F}^{2} + \lambda_{1} \|\operatorname{vec}(\boldsymbol{W}_{-1})\|_{1} + \lambda_{2} \|\boldsymbol{S}\|_{2,1}$$

- Step 1: Update W_{ij} by fixing **S** and W_{nt} (n = 1, ..., N and $n \neq i$, t = 1, ..., T and $t \neq j$)
- Step 2: Update S_{ij} by fixing **W** and S_{pt} (p = 1, ..., P and $p \neq i$, t = 1, ..., T and $t \neq j$)
- Step 3: Cyclically repeating Steps 1 and 2 until convergence

Detailed derivations of the whole algorithm can be found in our paper.

TECHNISCHE UNIVERSITÄT DARMSTADT

Overview

Introduction

Proposed Approach

Application to Source Localization

Summary and Outlook

Application to Source Localization Relative Frequency (RF) Comparison

Application to Source Localization Relative Frequency (RF) Comparison

Setups:

- ULA of *N* = 8 sensors
- *K* = 3 signals with directions: {−20°, 0°, 15°}
- Over-complete dictionary
 A contains P = 101
 columns, covering from
 -50° to 50°
- T = 64 snapshots
- SNR = 0 dB

Application to Source Localization Relative Frequency (RF) Comparison

Setups:

- ULA of N = 8 sensors
- K = 3 signals with directions: {−20°, 0°, 15°}
- Over-complete dictionary
 A contains P = 101
 columns, covering from
 -50° to 50°
- T = 64 snapshots
- SNR = 0 dB
- $\mathsf{RF}(\theta) = \frac{\hat{\kappa}(\theta)}{\mathsf{MC}}$

TU Darmstadt | GSC CE | Huiping Huang | ICASSP 2020 | 16/20

- **A** contains P = 101columns, covering from -50° to 50°
- T = 64 snapshots
- SNR = 0 dB
- $\mathsf{RF}(\theta) = \frac{\hat{\kappa}(\theta)}{\mathsf{MC}}$

Application to Source Localization Relative Frequency (RF) Comparison

Setups:

- ULA of N = 8 sensors
- K = 3 signals with directions: $\{-20^{\circ}, 0^{\circ}, 15^{\circ}\}$
 - Over-complete dictionary
- 0.2 0.2 0 -50 -20 15 50 -50 -20 0 15 DOA (Degree) DOA (Degree) SVD-LASSO Proposed 0.8 0.8 0.6 0.6 ۴ 0.4 0.4 0.2 0.2 0 -50 -20 0 15 50 -50 -20 0 15 DOA (Degree) DOA (Degree)

0.8

0.6

0.4

쁥

Capon Beamforming

0.8

0.6

0.4

쁥

쁐

MUSIC

50

50

Setups:

- ULA of N = 5 sensors
- K = 2 signals with directions: {−15°, 15°}
- Over-complete dictionary
 A contains P = 101
 columns, covering from
 -50° to 50°
- T = 64 snapshots
- SNR varies from -10 dB to 10 dB

Setups:

- ULA of N = 5 sensors
- K = 2 signals with directions: {−15°, 15°}
- Over-complete dictionary
 A contains P = 101
 columns, covering from
 -50° to 50°
- T = 64 snapshots
- SNR varies from -10 dB to 10 dB
- $\mathsf{PER} = \frac{1}{K} \sum_{k=1}^{K} \mathsf{RF}(\theta_k)$

Setups:

- ULA of N = 5 sensors
- K = 2 signals with directions: $\{-15^\circ, 15^\circ\}$
- Over-complete dictionary A contains P = 101columns, covering from -50° to 50°
- T = 64 snapshots
- SNR varies from -10 dB to 10 dB
- PER = $\frac{1}{K} \sum_{k=1}^{K} \text{RF}(\theta_k)$

< 🗗)

TECHNISCHE UNIVERSITÄT DARMSTADT

Overview

Introduction

Proposed Approach

Application to Source Localization

Summary and Outlook

TU Darmstadt | GSC CE | Huiping Huang | ICASSP 2020 | 18/20

Summary and Outlook

Summary:

- This paper studied the problem of row-sparse signal recovery for complex-valued data contaminated with outliers.
- Using a weight matrix, we formulated the problem in the form of LASSO-type.
- We extended CCD algorithm to solve the resulting problem.
- Simulation results showed that the proposed algorithm is robust against outliers even in the low SNR regime.

¹C. Steffens, M. Pesavento, and M.E. Pfetsch, "A compact formulation for the land mixed-norm minimization problem," *IEEE TSP* 2018.

TU Darmstadt | GSC CE | Huiping Huang | ICASSP 2020 | 19/20

Summary and Outlook

Summary:

- This paper studied the problem of row-sparse signal recovery for complex-valued data contaminated with outliers.
- Using a weight matrix, we formulated the problem in the form of LASSO-type.
- We extended CCD algorithm to solve the resulting problem.
- Simulation results showed that the proposed algorithm is robust against outliers even in the low SNR regime.

Outlook:

- The sparsity structure of the weight matrix will be further studied.
- Some state-of-the-art techniques, such as SPARROW¹, will be studied in the framework of row-sparse signal reconstruction.

¹C. Steffens, M. Pesavento, and M.E. Pfetsch, "A compact formulation for the land mixed-norm minimization problem," *IEEE TSP* 2018.

TU Darmstadt | GSC CE | Huiping Huang | ICASSP 2020 | 19/20

Thank you for your attention!

Acknowledgment:

This work of Huiping Huang is supported by the 'Excellence Initiative' of the German Federal and State Governments and the Graduate School of Computational Engineering at Technische Universität Darmstadt.

