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Introduction
Sparse Signal Reconstruction (1)

� A sparse signal can be reliably recovered from a reduced set of
measurements, under certain conditions, e.g., RIP.

� A sparse signal can carry useful information, such as directions
of sources.

� Applications

(a) Target tracking (b) Through-the-wall
radar 3D reconstruction

(c) Sonar imaging
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Introduction
Sparse Signal Reconstruction (2)

Data model:
y(t) = As(t) + e(t), t = 1,2, . . . ,T

� y(t) ∈ CN : Measurement data
� A ∈ CN×P : Predictor dictionary, N < P
� s(t) ∈ CP : Signal vector
� e(t) ∈ CN : Gaussian noise
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Introduction
Sparse Signal Reconstruction (3)

Data model in matrix form:

Y = AS + E

where Y = [y(1),y(2), · · · ,y(T )], S = [s(1),s(2), · · · ,s(T )],
E = [e(1),e(2), · · · ,e(T )]

Sparse signal reconstruction using LASSO:

min
S

1
2
‖Y− AS‖2F + λ‖S‖2,1

TU Darmstadt | GSC CE | Huiping Huang | ICASSP 2020 | 6/20



Introduction
Sparse Signal Reconstruction (3)

Data model in matrix form:

Y = AS + E

where Y = [y(1),y(2), · · · ,y(T )], S = [s(1),s(2), · · · ,s(T )],
E = [e(1),e(2), · · · ,e(T )]

Sparse signal reconstruction using LASSO:

min
S

1
2
‖Y− AS‖2F + λ‖S‖2,1

TU Darmstadt | GSC CE | Huiping Huang | ICASSP 2020 | 6/20



Introduction
Non-Gaussian Heavy-Tailed Noise (1)

� Data model without outliers

y(t) = As(t) + e(t)

e(t) ∈ CN : Gaussian noise

� Data model with outliers

y(t) = As(t) + q(t) ◦ e(t)

where the symbol ◦ stands for the Hadamard product operator,
q(t) ∈ RN : Weight vector{

qi(t)� 1 : Outlier
qi(t) = 1 : Non-outlier

where qi(t) is the i-th entry of q(t)
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Introduction
Non-Gaussian Heavy-Tailed Noise (2)

� Data model with outliers in matrix form:

Y = AS + Q ◦ E

where Q = [q(1),q(2), · · · ,q(T )]

� The problem to be addressed is as follows:

With known Y and A, recover the row-sparse matrix S.
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Proposed Approach
Proposed Minimization Problem (1)

min
W,S

1
2
‖W ◦ (Y− AS)‖2F + λ1‖vec(W−1)‖1 + λ2‖S‖2,1

� The first term: W is used to down-weight the the outliers while
keeping the remaining observations unchanged

0 < Wij < 1 for outliers, Wij = 1 for non-outliers
� The second term: Impose sparsity of W−1 = W− 1N×T

� The third term: Impose row-sparsity of S
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Proposed Approach
Proposed Minimization Problem (2)

min
W,S

1
2
‖W ◦ (Y− AS)‖2F + λ1‖vec(W−1)‖1 + λ2‖S‖2,1

� LASSO-type problem, cyclic coordinate descent (CCD)

� Biconvex with respect to W and S
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Proposed Approach
Remarks (1)

min
W,S

1
2
‖W ◦ (Y− AS)‖2F + λ1‖vec(W−1)‖1 + λ2‖S‖2,1

� Comparison with the one using Huber’s loss function

min
S
‖ρH(Y− AS)‖2F + µ‖S‖2,1

where

ρH(x) =
{
|x |2, for |x | ≤ c (i.e., non-outliers)
2c|x | − c2, for |x | > c (i.e., outliers)
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Proposed Approach
Remarks (2)

min
W,S

1
2
‖W ◦ (Y− AS)‖2F + λ1‖vec(W−1)‖1 + λ2‖S‖2,1

� Comparison with the original problem without outliers

min
S

1
2
‖Y− AS‖2F + λ‖S‖2,1

TU Darmstadt | GSC CE | Huiping Huang | ICASSP 2020 | 13/20



Proposed Approach
Extended Cyclic Coordinate Descent Algorithm

min
W,S

1
2
‖W ◦ (Y− AS)‖2F + λ1‖vec(W−1)‖1 + λ2‖S‖2,1

� Step 1: Update Wij by fixing S and Wnt (n = 1, . . . ,N and n 6= i ,
t = 1, . . . ,T and t 6= j)

� Step 2: Update Sij by fixing W and Spt (p = 1, . . . ,P and p 6= i ,
t = 1, . . . ,T and t 6= j)

� Step 3: Cyclically repeating Steps 1 and 2 until convergence

Detailed derivations of the whole algorithm can be found in our paper.
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Application to Source Localization
Relative Frequency (RF) Comparison

Setups:
� ULA of N = 8 sensors
� K = 3 signals with

directions: {−20◦,0◦,15◦}
� Over-complete dictionary

A contains P = 101
columns, covering from
−50◦ to 50◦

� T = 64 snapshots
� SNR = 0 dB
� RF(θ) = κ̂(θ)
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Application to Source Localization
Probability of Exact Recovery (PER) Comparison

Setups:
� ULA of N = 5 sensors
� K = 2 signals with

directions: {−15◦,15◦}
� Over-complete dictionary

A contains P = 101
columns, covering from
−50◦ to 50◦

� T = 64 snapshots
� SNR varies from −10 dB

to 10 dB
� PER = 1
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Summary and Outlook

Summary:
� This paper studied the problem of row-sparse signal recovery for

complex-valued data contaminated with outliers.
� Using a weight matrix, we formulated the problem in the form of

LASSO-type.
� We extended CCD algorithm to solve the resulting problem.
� Simulation results showed that the proposed algorithm is robust

against outliers even in the low SNR regime.

Outlook:
� The sparsity structure of the weight matrix will be further studied.
� Some state-of-the-art techniques, such as SPARROW1, will be

studied in the framework of row-sparse signal reconstruction.

1C. Steffens, M. Pesavento, and M.E. Pfetsch, “A compact formulation for the `2,1

mixed-norm minimization problem,” IEEE TSP 2018.
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Thank you for your attention!
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