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Introduction

Different Materials Exhibit Different Scattering Phenomena

e Light reaching the surface of a material undergoes a
set of scattering phenomena, such as surface scattering, -

surface-level inter-reflections, and subsurface scattering.
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e The combined effect of all scattering phenomena on an %
incident light signal can be modeled by means of a time- .
domain Material Impulse Response Function (MIRF),
denoted h (t;p), with p’a parameter vector.
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e Time-of-Flight (TOF) sensors can be used to obtain Figure 1: Schematics of the proposed material sensing concept showing different scattering phenomena undergone by incident light. (a): Direct surface scattering, as in a plain opaque
Fourier samples of the MIRF over dense areas. surface. (b): Surface-level inter-reflections, as in rough or irregular surfaces. (c): Subsurface scattering, as in materials that are not perfectly opaque (e.g., colloidal suspensions).

PMD ToF Technology MIRF Fourier Sampling with PMD Sensors

e The Photonic Mixer Device (PMD) is a core technology for AMCW-ToF depth imaging. e Let a material be modeled by the MIRF h (¢ 5) € Bq, such that n (W) = 0, |w| > €, where () is the

e (Quasi-)sinusoidally-modulated NIR (ours: 940 nm) illumination. Modulation frequencies: 20-160 MHz. bandwidth of /i (t; p) and pis a set of parameters that are both material an scene-dependent.

e A binary reference signal drives the separation of photogenerated charges into two integration wells. e For any desired frequency wy, such that |wi] < and 1 <k < K, the CW-ToF camera uses a periodic

" S | illumination modulation function py (f) with period Ay = 27 /wy to probe the MIRF.
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of 3D measurement.

e After reaching the material surface, py, (t) is affected by surface-level and subsurface scattering, modeled

b.) ° c.) ?
et W w A5 = = 20 by h (t;p), and the signal reflected to the camera is ry (t) = (pi * hy) (f) where % denotes convolution.

1” ﬂﬁ \I\;ﬁi‘;a“m‘mage e In the PMD pixels we use, the same signal is used both for modulation and demodulation, up to a shift
=4 al A, A, A, IA4

7. Thus, the demodulation signal is vy, (t) = pi (t + 7). Using different delays 7,, ¢ € N, a set of raw
- measurements at frequency wy can be obtained, which follow the model:
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Figure 2: a.) Schematic of a PMD pixel and controlled integration of: b.) DC light and c.) modulated light.

miq] = (Tr * pr) (74) = (re @ pr) (1) (2)
e Low-pass filtering effects lead to a quasi-sinusoidal cross-correlation function.The phase shift (thus the

. , where ® denotes cross-correlation operation and 7 (t) = rp (—1).
depth) and the amplitude can be retrieved from few (e.g., Q@ = 4) samples:

e from a sufficiently large number of measurements per frequency, @, using 7, = 2mq/(Qw) for ¢ =
I,...,Q, an estimate of hlk] can be obtained. In PMD ToF cameras ) = 4 and the method for
obtaining the phase and amplitude of hlk| is known as the four phases algorithm, outlined in (1).
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Methodology

Hardware and Software Highlights Importance of Harmonic Cancellation (HC)

e Hardware: new-generation PMD Selene module o If both py (¢) and vy, (t) are non-sinusoidal with overlapping harmonic content, then our estimate of h[k] will suffer from harmonic

— Extremely_low size: 11.5mm X 7.0mm X 4.2 mm distortion. — Two possibﬂities for a p’l"’l;O'I"’l; HC:

— Fourier sampling demonstrated for real-time multipath estimation in [1]. — Apply a generic Q-phases algorithm, with a large enough number of samples (). — Too slow for real time.

e Depth- and reflectivity-independent features based on the MIRF Fourier sam- — Bracketed exposure with ad-hoc phase shifts per bracket, as proposed in [4] — Enabled by our own hardware.
ples, fz,v € CV, where N = K — 1, are computed pixelwise, similar to [2, 3:
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where k.r denotes the index of the reference frequency, e.g., k.o = 1, and Time [ns]
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e Using the MIRF-based and texture-independent complex features ﬁ; va Figure 3: Relevant signals in our PMD-based ToF system from realistic simulations, with and without HC.
classifier, such as a decision tree of a Support Vector Machine (SVM), is trained.

Experimental Results

Dense Per-pixel Material Classification Superpixel-based Material Classification

e Material classification carried out for each pixel, (u,v), using the feature vectors calculated in (3). e Performing a classification query for all pixels in the array is time consuming for large array sizes.

o _ _ _ _ _ Furthermore, pixels belonging to the same material are typically grouped together.
e A dataset consisting of 5 different materials was acquired, gathering K = 6 frequencies per ToF frame,

from 20 MHz to 120 MHz. A Gaussian kernel classification model was fitted using 30% of the data. e Boundaries in the 2D image domain can be found where the MIRF, thus ﬁw, changes abruptly. A single

or very few classification queries per superpixel suffice for robustly classifying the region’s material.
Bl -oam Board o —— _— _
B Paper Sheets g S S e o
" Polystyrene 5 %1
Fine Fabric ' 4 FRie : o
B Bubble Wrap o k- YLl 1 2] A ‘

Figure 5: Confusion matrix COI‘I‘GSpOHdng to the (a) NIR DC Image l (b uperpiel Boundaries | (c) Superpixel-based Classification Result
Figure 4: Per-pixel material classification. 30% of the pixels are randomly results in Fig. 5. Ground truth per columns and
picked for training the classifier (masked in black). The remaining 70% prediction per rows. Rows and columns accord-
are used for validation. Color code in the top-left. Accuracy: 78%. ing to Fig. 5-top-left. White: 100% accuracy.

Figure 6: Superpixel-based classification. The classifier is trained as before, using 30% of randomly-selected pixels. (a):
NIR DC image of a composition of four materials. Color code in Fig. 5-top-left. (b): Superpixel boundaries detected using

ﬁ,v- (c): Classification result from 10 classification queries per superpixel. At superpixel scale accuracy is close to 100%.
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