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Speech enhancement in ad-hoc
microphone arrays

Advantages

• Flexible unconstrained geometry and usage

• Larger area coverage

Challenges

• Distributed processing

• Synchronization and calibration among nodes
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Speech enhancement in ad-hoc
microphone arrays

Distribute the processing for scalable, power-limited solutions

Figure from [Bertrand and Moonen, 2010]
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DANSE algorithm
[Bertrand and Moonen, 2010]
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DNN-based multichannel speech
enhancement

Use DNN to predict:

• TF-masks [Heymann et al., 2016]

• Clean spectrograms
[Nugraha et al., 2016]

• Beamformer coefficients
[Pfeifenberger et al., 2019]

DNN

Covariance

estimation

𝑀𝑠
𝑀𝑛

𝐑𝑠𝑠𝐑𝑛𝑛

𝐲

𝑠 ̂ 𝑘

𝐰

Nicolas Furnon ICASSP 2020 May 4th − 8th 6 / 17



Proposed solution

Bridge the gap between distributed solutions and
DNN-based solutions

• In DANSE, replace the VAD by a DNN-predicted TF-mask

• Exploit the multichannel information
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DNN-based mask estimation
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Exploitation of the multi-node
context
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Use the compressed signals to better predict the mask
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Comparison of the DNN architectures

RNN Vs CRNN

GRU

256 units

FF 257

 

Conv 3 x 3

BatchNorm

Max Pool 4 x 1

64

32

Conv 3 x 3

BatchNorm

Max Pool 4 x 1

BiLSTM

256 units

FF 513

FF 513

FF 257

Conv 3 x 3

BatchNorm

Max Pool 4 x 1

64

RNN [Heymann et al., 2016]

+ Process the temporal
information with the
recurrent layers

CRNN [Perotin et al., 2018]

+ Scalable to an increase of
input channels

+ Efficient processing of
multichannel input
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Acoustic scenario
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Train dataset: 10.000 signals
• α ∈ [25, 90]◦

φ ∈ [−180, 180]◦

• 3× 3× 2 ≤ l × w × h ≤ 8× 5× 3 m

• T60 ∈ [300, 600] ms

• SNR ∈ [−5, 15] dB

• Speech : LibriSpeech

• Noise: SSN

Test dataset: 1.000 signals

Same as train dataset but with restricted
values for the parameters.

Main difference: noise from CHiME 3
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Performance with oracle activity
detectors

I Useful to use a mask instead of a VAD
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RNN Vs CRNN: single-node case

I Similar performances as with an oracle VAD

I No much difference between RNN and CRNN
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RNN Vs CRNN: multi-node case

I No improvement with the RNN

I Significant improvement with the CRNN
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Conclusion

Conclusions

• First DNN-based distributed speech enhancement
algorithm

• Exploitation of the multi-node context for a more accurate
mask estimation

Perspectives

• Generalization to scenarios with a higher number of nodes
and varied signals

• Better exploitation of the information coming from the
other nodes (e.g. exploit SNR diversity)
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