





45th International Conference on Acoustics, Speech, and Signal Processing (ICASSP), May 4<sup>th</sup>-8<sup>th</sup> 2020

### Single-Shot Real-Time Multiple-Path Time-of-Flight Depth Imaging for Multi-Aperture and Macro-Pixel Sensors

Miguel Heredia Conde<sup>†</sup>, Keiichiro Kagawa\*, Tomoya Kokado\*, Shoji Kawahito\* and Otmar Loffeld<sup>†</sup>

<sup>†</sup>Center for Sensorsystems, University of Siegen, Paul-Bonatz-Str.9-11,57076 Siegen, Germany \*Research Institute of Electronics, Shizuoka University, Hamamatsu, Japan









### Outline

- 1. Introduction
- 2. Sensing Model
- 3. Single-Shot ToF Cameras
- 4. Parametric Estimation from Fourier Samples
- 5. Experimental Results
- 6. Conclusion











## 1. Introduction









### **Depth Imaging**

- **Depth sensing**: determining a 2D surface in a 3D space.
- **Methods** for *depth imaging*:
  - Laser Scanners
    - + High depth accuracy
    - Mobile parts (rotary mirrors)
    - Hard tradeoff between resolution and acquisition rate
  - Stereo Systems
    - + Passive, in presence of enough ambient light
    - Bulkiness: at least two cameras and enough parallax
    - Impossible to find correspondences in textureless scenes
    - Parallax problem: hard tradeoff between large and small paralaxes
  - Light Coding Technology. Paradigmatic example: Microsoft Kinect (v1)



The Velodyne HDL-64E: A 64-channel LiDAR with 120m range, able to deliver up to  $2.2 \times 10^6$  points per second with <2cm accuracy.



Karmin2 stereo cameras from Nerian Vision Technologies, with baselines of 10 and 25cm.



Microsoft Kinect (v1) sensor, featuring an RGB camera and a pair NIR-pattern emitter and NIR camera for depth sensing.



The PR2, from Willow Garage, features a stereo camera pair in its head. Additionally a Kinect (v1) was mounted on top. Image taken at the AIS Laboratory of the Albert-Ludwigs-Universität Freiburg.



Quadcopter with a Kinect sensor mounted on it, used to perform visual odometry and mapping. Courtesy of Albert S. Huang.









### **Continuous Wave Time-of-Flight Imaging**











### **Commercial CW-ToF Camera Technologies**

• Microsoft Kinect (latest release: Azure)











### **Commercial CW-ToF Cameras**

 Photonic Mixer Device (PMD). Selene module from pmdtechnologies ag:



Tested with up to 160MHz













### **Pulsed Time-of-Flight Imaging**











### **Commercial Pulsed CW-ToF Cameras**

Hamamatsu
 S11963-01CR:

Analog Devices
 AD-96TOF1-EBZ:



Max. Pulse width: T=50ns

Pulse width: T=22ns











### **Multiple-Path Interference (MPI):**











### How to Resolve Multiple Paths per Pixel?

- CW-ToF:
  - Interference of several sinusoids is also a sinusoid.
     Impossible with monotone CW-ToF.
  - The scene should be probed at different frequencies.
- Pulsed-ToF:
  - Acquisitions at different time shifts between Illumination Control Signal (ICS) and Demodulation Control Signals (DCS) are required.
- <u>The Challenge</u>: how to acquire more raw images within the same acquisition time?











# 2. Sensing Model





 In the case of reflective MPI, the scene response function is of the shape:

$$h(t) = \sum_{k=0}^{K-1} \Gamma_k \delta(t - t_k), \qquad t_k = \frac{2d_k}{c}$$

where  $t_k$  is the delay undergone by the  $k^{\text{th}}$  reflection,  $k \in [0, K - 1]$  and  $\Gamma_k$  is the corresponding attenuation factor.

• Let i(t) be the illumination signal. Then the signal r(t) received at the ToF pixel is given by the convolution: r(t) = i \* h(t)





 If Q > 1 raw images are to be acquired using Q different DCS pq(t), 1 ≤ q ≤ Q, then the measurements are given by the cross-correlation:

 $m_q(t) = p_q \otimes r(t) = p_q \otimes (i * h)(t) = (i \otimes p_q) * h(t)$ 

- In other words, we sample the convolution between the scene response function and several sensing functions  $s_q(t)$ : =  $(i \otimes p_q)(t)$
- In conventional ToF, Q = 1 and measurements at different phase shifts are acquired. We focus on Q > 1.





 Differently from prior work, we aim for a single shot camera, thus a single measurement per (sub-)pixel will be acquired:

$$m[q] \coloneqq m_q(t_0), \qquad t_0 = 0, \qquad 1 \le q \le Q$$
$$= \int_{-\infty}^{\infty} s_q(t) h^*(-t) dt = \langle s_q(t), h(-t) \rangle$$

• Let  $\vec{s_q}$  and  $\vec{h}$  denote discrete versions of  $s_q(t)$  and h(t) of size n, then we have the linear model

$$\vec{m} = S\vec{h}$$

where  $\vec{m} \coloneqq [m(q)]_{q=1}^{Q}$  and the fat matrix S of size  $Q \times n$  is obtained from the vectors  $\vec{s_q}$ ,  $1 \le q \le Q$ .











## 3. Single-Shot ToF Cameras









# How can we measure according to *Q* different sensing functions?

- Multiplex in time domain (sequential acquisition)
  - Problem: linear growth of acquisition time
- Multiplex in spatial domain. Our alternatives:
  - Multi-Aperture Ultra-High-Speed (MAUHS) CMOS Image Sensor (CIS)
  - 2. Multi-tap Macro-Pixel-based Ultra-High-Speed CIS





|           | Multi-aperture     | Macro-pixel     |
|-----------|--------------------|-----------------|
| Shutter   | Per aperture       | Per subpixel    |
| Disparity | Exists             | -               |
| Lens      | Special lens array | Ordinary lenses |





**Conventional CMOS pixel** 





### Lateral electric-field charge modulator (LEFM)

























# How do the sensing functions of MP pixels look like?











UNIVERSITÄT SIEGEN



Y. Shirakawa et al., MDPI Sensors 20, Article 1040 (2020).











# 4. Parametric Estimation from Fourier Samples





• How to Extract the Fourier Samples?

$$\overrightarrow{m} = S\overrightarrow{h} \qquad \overrightarrow{y} = A\overrightarrow{h} \qquad \overrightarrow{y} = B^*\overrightarrow{\mathcal{H}} \qquad \overrightarrow{y} \approx [B^*]_{:,\Omega}\overrightarrow{\mathcal{H}}_{\Omega} \qquad \overrightarrow{\mathcal{H}}_{\Omega} \approx \{[B^*]_{:,\Omega}\}^{\dagger}\overrightarrow{y}$$
Linear
Measurements
$$\Rightarrow \text{Rotation} \Rightarrow \overrightarrow{\mathcal{F}}_n^*\overrightarrow{\mathcal{F}}_n \Rightarrow \overrightarrow{\Omega}\text{-Lowpass} \Rightarrow \text{Moore-Penrose}$$
Pseudoinverse
$$A = RS \qquad B = \overrightarrow{\mathcal{F}}_n A^* \qquad |\Omega| \le Q$$

R orthonormal

- Parametric estimation from Fourier samples:
  - From the sparse scene response model we have:

 $\mathcal{H}_{l} = \sum_{k=1}^{K-1} \Gamma_{k} e^{il\omega_{0}t_{k}} \begin{bmatrix} \text{We use a robust variant of$ **Prony's method** $to obtain {} \Gamma_{k}, t_{k} \}_{k=1}^{K} \text{ from } \\ \vec{\mathcal{H}}_{\Omega} \text{ in a closed form.} \end{bmatrix}$ 

that is, the elements of  $\overrightarrow{\mathcal{H}}_{\Omega}$  are samples of a sum of sinusoids, and the problem of sparse estimation in a high-dimensional domain boils down to estimating the frequencies of a sum of *K* sinusoids given  $N \ge 2K + 1$  samples.  $\rightarrow$  Classical Spectral Estimation!











### 5. Experimental Results





#### Synthetic Experiments with Real Sensing Functions:



Q = 16, T = 141.6ns, Step size: 8.85ns  $\rightarrow$ 1.33m resolution. With our parametric estimation approach, we observe target separation failure for  $\Delta \le 0.60$ m. For a single target, reconstruction is exact.









### Real Experiments: Multi-Aperture (MA) Sensor, Q = 15:







#### Real Experiments: Macro-Pixel (MP) Sensor, Q = 12:











### Summary of Results with Real Data:

- For single-path ToF imaging:
  - Very accurate reconstruction, down to  $\sigma ~=~ 1.67 {\rm cm} \rightarrow \sim \times 10^2$  superresolution factor
- For two-path ToF imaging:
  - The two paths can be identified and, for some pixels, properly separated.
  - For the pixels selected in the previous figures, we observe depth differences between path 1 and 2 that are similar to the ground truth:

| Ground Truth                 | MA-ToF                          | MP-ToF            |
|------------------------------|---------------------------------|-------------------|
| $\Delta d = 0.80 m$          | $\Delta d \sim 0.82 \mathrm{m}$ | ∆ <i>d</i> ~0.80m |
| $\Delta d = 1.60 \mathrm{m}$ | $\Delta d \sim 1.65$ m          | ∆ <i>d</i> ~1.49m |











### 5. Conclusions









- In ToF imaging, retrieving more than a single depth per pixel requires multiple raw images per frame.
- Time-domain multiplexing precludes real-time operation.
- We have proposed using two hardware architectures to attain single-shot ToF imaging, namely:
  - Multi-Aperture ToF arrays (MA)
  - Muti-tap Macro-Pixel ToF arrays (MP)
- Instead of adopting a classical time-gating formulation, which ties the temporal resolution to the number of samples, we propose a formulation in Fourier domain and solve the problem using a fast and robust parametric spectral estimation method.
- Results from both realistic simulations and experiments using real MA and MP prototypes have unveiled the potential of our method, showing superresolution factors up to  $\sim 10^2$ .











# Thank you for your Attention!

Don't hesitate forwarding your questions to: <u>heredia@zess.uni-siegen.de</u>

