

#### Ensemble Network for Ranking Images based on Visual Appeal

#### Sachin Singh<sup>1</sup>, Victor Sanchez<sup>2</sup>, Tanaya Guha<sup>2</sup> presented by Sochin Singh







Motivation

- Motivation
- Objective

- Motivation
- Objective
- Database Collection

- Motivation
- Objective
- Database Collection
- Proposed Methods/Models

- Motivation
- Objective
- Database Collection
- Proposed Methods/Models
- Results

- Motivation
- Objective
- Database Collection
- Proposed Methods/Models
- Results
- Conclusion

• With easy access to smartphones we are capturing and more and more pictures

- With easy access to smartphones we are capturing and more and more pictures
- During social gatherings or casual group photoshoot we click many photos

- With easy access to smartphones we are capturing and more and more pictures
- During social gatherings or casual group photoshoot we click many photos
- However we just like a few them, rest just fills our storage

























































#### How to Rank?

#### Objective



• To design a computational framework for ranking group photos

#### Objective

- To design a computational framework for ranking group photos
- Photos are assumed to be taken at the same event or within a short time span

#### Objective

- To design a computational framework for ranking group photos
- Photos are assumed to be taken at the same event or within a short time span
- Ranking is expected to match human perception of overall appeal of photos

• Subjective problem

- Subjective problem
- Enormous complexity

- Subjective problem
- Enormous complexity
- Unavailability of related dataset

• Collected around 300 group photos from web and volunteers



- Collected around 300 group photos from web and volunteers
- Photos were grouped into sets (each with 2-5 photos)



- Collected around 300 group photos from web and volunteers
- Photos were grouped into sets (each with 2-5 photos)
- Discarded sets which either have just 2 photos or its images are very similar



- Collected around 300 group photos from web and volunteers
- Photos were grouped into sets (each with 2-5 photos)
- Discarded sets which either have just 2 photos or its images are very similar
- Finally we have 70 sets of group images with 3 photos per set



• Build a project website and conducted an online survey

- Build a project website and conducted an online survey
- Annotators were asked to provide the relative ranks of each photos within its own set

- Build a project website and conducted an online survey
- Annotators were asked to provide the relative ranks of each photos within its own set
- Each photo is annotated by at least 5 annotators

- Build a project website and conducted an online survey
- Annotators were asked to provide the relative ranks of each photos within its own set
- Each photo is annotated by at least 5 annotators
- Final ranks were decided based on majority vote

#### Project Website

Each row

one set



#### Preliminary Results



#### Ranking Framework



#### Group Happiness

#### Group Happiness

• It's the overall happiness intensity expressed by a group photo





Image courtesy : https://www.istockphoto.com/in/video/slow-motion-beach-friends-group-selfie-gm467693556-61283828 http://jarilloherrero.mit.edu/photos/

#### Group Happiness

- It's the overall happiness intensity expressed by a group photo
- Includes both the global features e.g. context, group pose and local attributes like individual face expression





Image courtesy : https://www.istockphoto.com/in/video/slow-motion-beach-friends-group-selfie-gm467693556-61283828 http://jarilloherrero.mit.edu/photos/

#### HAPPEI Database

- Collected by Dhall et al. [2015]
- Composed of 2638 group images
- Images are labelled with six discrete labels (0-5) of happiness intensity for both individuals and group







#### sCNN





nput Sallen Map

## Attention Maps with and without Saliency loss





#### Performance Evaluation

Table 1. Group happiness estimation results on HAPPEI database.

| Method                    | $\mathbf{MAE}\downarrow$ |
|---------------------------|--------------------------|
| Mean emotion [18]         | 0.57                     |
| Dhall et al. [18]         | 0.38                     |
| Proposed without saliency | 0.42                     |
| Proposed sCNN             | 0.39                     |

#### Aesthetics



Image courtesy: https://petapixel.com/assets/uploads/2016/08/aesthetics\_feat-800x533.jpg

#### Aesthetics

Kong et al. [2016] proposed a CNN based model for recognising aesthetics in photos



### Blind Image Quality (BIQ)

• Image Quality assessment without any reference image



Score 4.7



Score 2.3

• In this work we used BRISQUE algorithm (Mittal et al. [2012] ) for quantifying BIQ

#### Fusion : RankSVM





#### **Evaluation Metrics**

For comparing the performance of different ranking models we employed 3 evaluation metrics

- Spearman Ranking Correlation (higher the better)
- Best Image Match (BIM)
- Percentage of Swapped Pairs (PSP)

#### Evaluation Metrics : Proposed BIM

BIM – Best Image Match (higher the better)

 $BIM = \frac{\text{Total positive sets}}{\text{Total numbers of sets}} \times 100$ 

positive set : set for which predicted best image matches with ground best image

#### Evaluation Metrics : Proposed PSP

PSP – Percentage of swapped pairs (lower the better)

$$PSP = \frac{\sum_{i}^{N} \text{Total no of swapped pairs in } i^{th} \text{ set}}{\sum_{i}^{N} \text{Total no of possible pairs in } i^{th} \text{ set}} \times 100$$

Here an image pair within a set is considered swapped if its predicted rank order is opposite to its ground truth rank order

#### Ranking Evaluations

Table 2. Group photo ranking performance on rGroup database.

| Method                 | <b>BIM</b> ↑ | <b>PSP</b> ↓ | Corr $(\rho)\uparrow$ |
|------------------------|--------------|--------------|-----------------------|
| Avg. human performance | 74.00        | 7.95         | 0.93                  |
| Individual channel     |              |              |                       |
| Group happiness (sCNN) | 27.14        | 39.70        | 0.21                  |
| Aesthetics [4]         | 37.10        | 27.80        | 0.52                  |
| Image quality          | 47.14        | 22.04        | 0.65                  |
| All channels           |              |              |                       |
| Mean pooling           | 40.00        | 22.61        | 0.63                  |
| Max pooling            | 41.40        | 27.85        | 0.52                  |
| rankSVM                | 48.60        | 21.85        | 0.69                  |
| rankNet                | 52.38        | 18.00        | 0.69                  |

 Collected a new database called Ranked Group Photos (rGroup) which is a collection of around 210 group photos taken during various social gatherings

- Collected a new database called Ranked Group Photos (rGroup) which is a collection of around 210 group photos taken during various social gatherings
- Proposed a CNN based architecture for predicting group happiness

- Collected a new database called Ranked Group Photos (rGroup) which is a collection of around 210 group photos taken during various social gatherings
- Proposed a CNN based architecture for predicting group happiness
- Proposed a multichannel computational framework for ranking a number of group photos taken at the same event within a short time span

- Collected a new database called Ranked Group Photos (rGroup) which is a collection of around 210 group photos taken during various social gatherings
- Proposed a CNN based architecture for predicting group happiness
- Proposed a multichannel computational framework for ranking a number of group photos taken at the same event within a short time span
- Defined two new evaluation metrics for evaluating ranking models BIM and PSP

- Collected a new database called Ranked Group Photos (rGroup) which is a collection of around 210 group photos taken during various social gatherings
- Proposed a CNN based architecture for predicting group happiness
- Proposed a multichannel computational framework for ranking a number of group photos taken at the same event within a short time span
- Defined two new evaluation metrics for evaluating ranking models BIM and PSP
- Need a larger dataset for training end-2-end model

- Collected a new database called Ranked Group Photos (rGroup) which is a collection of around 210 group photos taken during various social gatherings
- Proposed a CNN based architecture for predicting group happiness
- Proposed a multichannel computational framework for ranking a number of group photos taken at the same event within a short time span
- Defined two new evaluation metrics for evaluating ranking models BIM and PSP
- Need a larger dataset for training end-2-end model
- Inclusion of other relevant visual cues in context of ranking group photos

# Thank You