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Motivation

● The memory subsystem can limit the system’s 
performance:
– Bandwidth;
– Latency.

R. Das et al., “Compute caches,” in HPCA. IEEE Computer Society, 2017, pp. 481–492;
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Convolutional Neural Networks

● Convolutional Neural Networks (CNNs) are characterized by massive datasets;
● Depending on the CNN architecture, thousands of elementary operations are performed:

– Usually, over 90% of the CNN’s workload is due to convolutions (convolutional 
and pooling layers).

J. Cong et al., “Minimizing Computation in Convolutional Neural Networks,” in ICANN, 2014, vol. 8681 of Lecture Notes in Computer 
Science, pp. 281-290, Springer.
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It would be more efficient not to transfer 
data between the memory subsystem and 

the processing elements, but instead 
perform the computation in-place, in 

parallel
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Near-Data-Processing

● Processing-In-Memory (PIM) solutions appeared during the 1980s;
– Mostly based on bit-line processing;
– Hard to integrate before 3D-stacking (introduced much later);
– Hard to use (each solution had its own programming paradigm);
– Recently, PIM evolved to enable analog and digital processing in Resistive Random 

Access Memories (RRAMs)
● Some solutions use custom hardware to perform computation near the memory:

– Not as efficient as bit-line computation;
– Allow more complex operations.

● Near-Data-Processing (NDP) was recently ported to cache.

A. Shafiee et al., “ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog Arithmetic in Crossbars,” in ISCA, 2016, pp. 14-26;

R. Das et al., “Compute caches,” in HPCA. IEEE Computer Society, 2017, pp. 481–492;

T. Mowry et al., “Fast bulk bitwise AND and OR in DRAM”, Computer Architecture Letters, vol. 14, no. 2, pp. 127–131, 2015;

O. Mutlu et al., “Pim-enabled instructions: a low-overhead, locality-aware processing-in-memory architecture,” in ISCA. ACM, 2015, pp. 336–348;

R. Das et al., “Cache automaton,” in MICRO. ACM, 2017, pp. 259–272.
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Compute Cache System

● Dedicated hardware to perform parallel 
computation near the cache, taking advantage of:
– Operands locality;
– Long cache lines;
– Lower latency to the main memory;
– Existing cache coherency protocols.

● The CCS is integrated with an existing 
processing system:
– As a slave of the processing core;
– Communicating with the LLC to get the operands;
– Communicating with the main memory in case of 

cache miss.
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System Schematics

47 
Commands
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Lets check an operation example!
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Example: 2-D convolution (1)

f (A ,B)=∑i
(ai×bi)

ai×bi

∑i
ai×bi
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Example: 2-D convolution (2)

f (A ,B)=∑i
(ai×bi)

ai×bi

∑i
ai×bi

a×b a×b a×b a×b a×b a×b
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Example: 2-D convolution (3)

f (A ,B)=∑i
(ai×bi)

ai×bi

∑i
ai×bi

a×b a×b a×b a×b a×b a×b
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Example: 2-D convolution (4)

f (A ,B)=∑i
(ai×bi)

ai×bi

∑i
ai×bi

a×b a×b a×b a×b a×b a×b

a+b a+b a+b
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Example: 2-D convolution (5)

f (A ,B)=∑i
(ai×bi)

ai×bi

∑i
ai×bi

a×b a×b a×b a×b a×b a×b

a+b a+b a+b

a+b a+b
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Example: 2-D convolution (6)

f (A ,B)=∑i
(ai×bi)

ai×bi

∑i
ai×bi

a×b a×b a×b a×b a×b a×b

a+b a+b a+b

a+b a+b

a+b
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Example: 2-D convolution (7)

f (A ,B)=∑i
(ai×bi)

ai×bi

∑i
ai×bi

a×b a×b a×b a×b a×b a×b

a+b a+b a+b

a+b a+b

a+b

a+b

What if the 
vector is too 

big to be 
operated at 

once?
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Pipeline execution/hardware loops
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But what if the vectors are not 
aligned or continuous in memory?
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Execution mask

f (A ,B)=∑i
(ai×bi)

ai×bi

∑i
ai×bi

a×b a×b a×b a×b a×b a×b

a+b a+b a+b

a+b a+b

a+b

a+b

1 11 0 0 1 1 0 0 1 1 0 0
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Simulation methodology

● Simulated using gem5 architectural simulator;
● ARM Cortex-A53 model was enhanced with gem5-X for increased simulation accuracy;
● CCS was connected to the CPU through a memory mapped interface and coupled to 

the L2 (LLC) cache;
● A second TLB and page-walker was added to the CCS for address translation;
● The simulated version of the CCS is capable of processing up to 2 16-element vectors 

of 32-bit fixed-points per cycle;

L. Nathan et al., “The gem5 simulator,” SIGARCH Computer Architecture News, vol. 39, no 2, pp. 1-7, 2011;
Y. Qureshi et al., “Gem5-X: a Gem5-Based System Level Simulation Framework to Optimize Many-Core Platforms,” in SpringSim. 2019, pp. 
1-12, IEEE.
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Programming the CCS

● Library (written in ARMv8 
Assembly) to allow low-level 
control over the CCS;

● Framework (written in C) to 
offload convolutional and 
polling layers of CNNs to the 
CCS.
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Experimental results
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Summary

● The CCS brings several advantages:
– Data is not transferred to the core;
– Computation is performed in parallel;
– Cycle control overhead is drastically reduced;
– Pipelined data path allows to increase the performance even further.
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