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❑ A set of points in 3D Euclidean space (ℝ3), where each point has a position defined by its (𝑥,𝑦,𝑧)

coordinates (i.e., its geometry) and, optionally, other attributes, most typically colour (R, G, B).

❑ Both geometry and attributes require compression in order for the point cloud to be efficiently stored,

distributed, and used in practice.

❑ Point clouds are rapidly becoming the representation of choice for 3D objects/scenes in many

application areas, largely due to their flexibility in representing both manifold and non-manifold surface

geometry, since there is no explicit surface topology that needs to be encoded.

❑ The recent and still ongoing MPEG-PCC (Point Cloud Compression/Coding) standardisation activity [1]

has greatly contributed to this recent popularity of point clouds and to the popularity of research into

point cloud compression.

[1] S. Schwarz, et al., “Emerging MPEG standards for point cloud compression,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems,

vol. 9, no. 1, pp. 133–148, Mar. 2019.
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❑ A representation of all the observed light rays in free space, described by the plenoptic function [2]:

𝑃(𝑥, 𝑦, 𝑧, 𝜃, 𝜙),

where 𝑃 is the radiance of light observed from every possible viewing position (𝑥, 𝑦, 𝑧), with every

possible viewing angle (𝜃, 𝜙) (azimuth, elevation).

❑ In practice, the parameters of 𝑃 are sampled.

❑ When the points (𝑥, 𝑦, 𝑧) are defined directly on the surface of a 3D object, we have a Surface Light

Field (SLF) representation.

❑ The SLF can be regarded as a function 𝑓(𝑤|𝑝), such that for a point 𝑝 on the surface, 𝑓(𝑤|𝑝)

represents the (R, G, B) value of a light ray starting at 𝑝 and emanating outwards in direction 𝑤.

❑ We thus end up with a “view map”, or “colour map”, for each surface point 𝑝, which describes the

colour of 𝑝 as seen from different viewpoints.

❑ The past decade has seen a revival of research on light field imaging, mainly due to the relatively

recent availability of consumer light field capture systems. This has consequently led to light field

compression becoming an active area of research [3], as well as an active part of both JPEG and

MPEG standardisation activities [4, 5].

[2] E. H. Adelson and J. R. Bergen, “The plenoptic function and the elements of early vision,” in Computational Models of Visual Processing, pp. 3–20.

MIT Press, Cambridge, MA, 1991.

[3] I. Viola, M. Řeřábek, and T. Ebrahimi, “Comparison and evaluation of light field image coding approaches,” IEEE Journal of Selected Topics in Signal

Processing, vol. 11, no. 7, pp. 1092–1106, Oct. 2017.

[4] T. Ebrahimi, S. Foessel, F. Pereira, and P. Schelkens, “JPEG Pleno: Toward an efficient representation of visual reality,” IEEE MultiMedia, vol. 23, no.

4, pp. 14–20, Oct. 2016.

[5] M. Domański, O. Stankiewicz, K.Wegner, and T. Grajek, “Immersive visual media - MPEG-I: 360 video, virtual navigation and beyond,” in 2017

International Conference on Systems, Signals and Image Processing (IWSSIP), May 2017, pp. 1–9.

What is a Light Field?

- 3



❑ It is essentially a point cloud representation of a Surface Light Field.

❑ Usually in a 3D point cloud, colour is represented as one (R, G, B) triplet per point. But

for realistic representations of 3D objects that contain specular surfaces, where the

reflected light differs depending on the viewing angle, a single colour per point is

insufficient.

❑ For this reason, in the recently-introduced plenoptic point cloud representation [6, 7], the

geometry and RGB colours for each surface point 𝑝𝑖 in a finite set of points 𝑝𝑖|𝑖ϵ[1, 𝑁𝑝]

in ℝ3, are represented as the following vector:

𝑝𝑖 = [𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 , 𝑅𝑖
1, 𝐺𝑖

1, 𝐵𝑖
1, … , 𝑅𝑖

𝑁𝑐 , 𝐺𝑖
𝑁𝑐 , 𝐵𝑖

𝑁𝑐],

where 𝑁𝑐 is a finite number of camera viewpoints used to capture the 3D object, and

[𝑅𝑖
1, 𝐺𝑖

1, 𝐵𝑖
1, … , 𝑅𝑖

𝑁𝑐 , 𝐺𝑖
𝑁𝑐 , 𝐵𝑖

𝑁𝑐] is the plenoptic or multi-view colour vector, which describes

the colour values of point 𝑝𝑖 as seen from each of the 𝑁𝑐 viewpoints.

❑ Such a representation is very promising for applications that require both, the versatility

and convenience of a point cloud, and the richness of visual information provided by a

light field.

[6] G. Sandri, R. de Queiroz, and P. A. Chou, “Compression of plenoptic point clouds using the region-adaptive hierarchical transform,” in 2018 25th IEEE

International Conference on Image Processing (ICIP), Oct. 2018, pp. 1153–1157.

[7] G. Sandri, R. L. de Queiroz, and P. A. Chou, “Compression of plenoptic point clouds,” IEEE Transactions on Image Processing, vol. 28, no. 3, pp. 1419–

1427, Mar. 2019.
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❑ The plenoptic point cloud representation [6, 7] was introduced together with four extensions of the

well-known Region-Adaptive Hierarchical Transform (RAHT) [8, 9] method (which is part of the

upcoming MPEG G-PCC standard for point cloud attribute coding), to efficiently compress the

plenoptic colour vectors.

❑ The best-performing RAHT extension, RAHT-KLT, works as follows:

1. An 𝑁𝑐 × 𝑁𝑐 covariance matrix is computed for each colour channel 𝐶 (Y, U, V colour

channels were used in [6, 7], transformed from the original (R, G, B) space).

2. The eigenvectors of each covariance matrix are computed through a Singular Value

Decomposition (SVD).

3. These eigenvectors are used to perform a Karhunen-Loève Transform (KLT) on each colour

vector 𝒄 𝑛 = [𝐶1 𝑛 , 𝐶2 𝑛 ,… , 𝐶𝑁𝑐(𝑛)]
𝑇 for each point 𝑛 in the point cloud, for each colour

channel 𝐶.

4. The 𝑁𝑝 × 3 matrix of KLT-transformed vectors for each of the 𝑁𝑐 viewpoints is then

compressed spatially with RAHT.

[6] G. Sandri, R. de Queiroz, and P. A. Chou, “Compression of plenoptic point clouds using the region-adaptive hierarchical transform,” in 2018 25th IEEE

International Conference on Image Processing (ICIP), Oct. 2018, pp. 1153–1157.

[7] G. Sandri, R. L. de Queiroz, and P. A. Chou, “Compression of plenoptic point clouds,” IEEE Transactions on Image Processing, vol. 28, no. 3, pp. 1419–

1427, Mar. 2019.

[8] R. L. de Queiroz and P. A. Chou, “Compression of 3d point clouds using a region-adaptive hierarchical transform,” IEEE Transactions on Image

Processing, vol. 25, no. 8, pp. 3947–3956, Aug. 2016.

[9] G. Sandri, R. L. de Queiroz, and P. A. Chou, “Comments on ‘Compression of 3D Point Clouds Using a Region-Adaptive Hierarchical Transform’,”

ArXiv:1805.09146v1 [eess.IV], May 2018.
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❑ Our focus in this paper is the compression of the multi-view colour vectors in

plenoptic point clouds [6, 7], assuming a lossless geometry.

❑ In particular, we wish to improve upon the rate-distortion (R-D) performance

shown for RAHT-KLT in [6, 7].

❑ We have identified two main areas for improvement in RAHT-KLT:

1. The computation of covariance matrices currently requires averaging the

colours across all 𝑁𝑝 points in a plenoptic point cloud. However, in practice,

the distribution of colours across these points is likely to be quite wide, resulting

in relatively high standard deviations for their averages. Therefore, the

associated KLT vectors will not fit the input data as well as they could.

2. The R-D performance of RAHT-KLT was shown in [6, 7] to suffer if the input

point cloud contains highly specular regions, where the colour of each point

varies noticeably across the different viewpoints. But the identification and

handling of such specular regions was left for future work in [6, 7].

[6] G. Sandri, R. de Queiroz, and P. A. Chou, “Compression of plenoptic point clouds using the region-adaptive hierarchical transform,” in 2018 25th IEEE

International Conference on Image Processing (ICIP), Oct. 2018, pp. 1153–1157.

[7] G. Sandri, R. L. de Queiroz, and P. A. Chou, “Compression of plenoptic point clouds,” IEEE Transactions on Image Processing, vol. 28, no. 3, pp. 1419–

1427, Mar. 2019.
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❑ We show that the rate-distortion (R-D) performance of the RAHT-KLT coder [6, 7] suffers if

the colour variation across the input points is high.

❑ We therefore propose that instead of applying RAHT-KLT on the entire plenoptic point cloud

as in [6, 7], this point cloud should first be clustered into sub-clouds based on similar colour

values, then each sub-cloud encoded separately with RAHT-KLT. We demonstrate a

simple way to do this clustering by using k-means.

❑ We propose that each colour cluster should be further separated into specular and diffuse

components, which are also encoded separately by RAHT-KLT. We propose a way to do

this separation using Robust Principal Component Analysis (RPCA).

❑ We demonstrate that the above contributions result in better rate-distortion performance

than when applying RAHT-KLT on the entire plenoptic point cloud as in [6, 7].

❑ We show, for the first time, rate-distortion results for RAHT-KLT on the 12-bit geometry

8iVSLF (8i Voxelized Surface Light Field) static point clouds, which were recently

contributed to MPEG as the first plenoptic point cloud dataset [10]. (In [6, 7], lower-

resolution versions of 8iVSLF were used.)

[6] G. Sandri, R. de Queiroz, and P. A. Chou, “Compression of plenoptic point clouds using the region-adaptive hierarchical transform,” in 2018 25th IEEE

International Conference on Image Processing (ICIP), Oct. 2018, pp. 1153–1157.

[7] G. Sandri, R. L. de Queiroz, and P. A. Chou, “Compression of plenoptic point clouds,” IEEE Transactions on Image Processing, vol. 28, no. 3, pp. 1419–

1427, Mar. 2019.

[10] M. Krivokuća, P. A. Chou, and P. Savill, “8i voxelized surface light field (8iVSLF) dataset,” input document m42914, ISO/IEC JTC1/SC29 WG11

(MPEG), Ljubljana, Slovenia, Jul. 2018.

Our Contributions
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Plenoptic Point Cloud Dataset Used for Testing: 

8iVSLF Static Point Clouds
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boxer_viewdep_vox12 longdress_viewdep_vox12 loot_viewdep_vox12

Thaidancer_viewdep_vox12redandblack_viewdep_vox12 soldier_viewdep_vox12

Dataset No. of 

Input 

Points 

(𝑁𝒑)

No. of Camera 

Viewpoints 

(𝑁𝑐)

boxer 3,493,085 13

longdress 3,096,122 12

loot 3,017,285 13

redandblack 2,770,567 12

soldier 4,001,754 13

Thaidancer 3,130,215 13



❑ Not limited to any particular clustering method. For the work in this paper, we use k-

means as an example, with a squared Euclidean distance measure, k-means++ [11]

to choose the initial seeds, and a stopping criterion of 100 iterations.

❑ The value of k is chosen heuristically, to correspond roughly to the number of different

colours in the input point cloud.

❑ Our input matrix to k-means has 𝑁𝑝 rows (one row per input point in the point cloud),

and 3 columns (average colour in each of the 3 colour channels).

❑ For the columns, we rely on the assumption that in practice, most plenoptic point

clouds are likely to represent mostly Lambertian [12] or near-Lambertian surfaces, so

we should be able to obtain a reasonable approximation of each point’s colour from

the average of its colours across the 𝑁𝑐 viewpoints.

❑ To decide which colour space to use for the input plenoptic colour matrix, we first

tested RAHT-KLT on the 8iVSLF point clouds [10] (without clustering), in 3 commonly

used colour spaces: RGB, YUV, and HSV ...

[10] M. Krivokuća, P. A. Chou, and P. Savill, “8i voxelized surface light field (8iVSLF) dataset,” input document m42914, ISO/IEC JTC1/SC29 WG11

(MPEG), Ljubljana, Slovenia, Jul. 2018.

[11] D. Arthur and S. Vassilvitskii, “K-means++: The advantages of careful seeding,” in Proceedings of the Eighteenth Annual ACM-SIAM Symposium on

Discrete Algorithms, Philadelphia, PA, USA, 2007, SODA ’07, pp. 1027–1035, Society for Industrial and Applied Mathematics.

[12] S. J. Koppal, “Lambertian reflectance,” in Computer Vision: A Reference Guide, K. Ikeuchi, Ed., pp. 441–443. Springer US, Boston, MA, 2014.
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❑ Our hypothesis: The colour space where RAHT-

KLT achieves the best R-D results would be the

one that has the lowest average standard

deviation in colour across the 𝑁𝑝 input points.

❑ Our experiments showed that this hypothesis is

true: RAHT-KLT achieves the best R-D

performance in YUV space, where the average

colour standard deviation across the 𝑁𝑝 input

points is the lowest, and the worst performance in

HSV, where this standard deviation is the highest.

❑ These observations also confirm that the

performance of RAHT-KLT suffers if the colour

variability across the input points is high, which

motivates the need for prior clustering.

Proposed Colour-Based Clustering
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Dataset RGB Std. Dev. YUV Std. Dev. HSV Std. Dev.

boxer 33.95 14.69 38.06

longdress 40.09 23.16 56.04

loot 33.86 15.00 35.70

redandblack 32.77 19.49 72.08

soldier 28.33 11.21 45.62

Thaidancer 37.59 23.30 56.70



❑ Some example clusters for Thaidancer_viewdep_vox12 are shown below.

❑ We see that meaningful colour separations are produced, even when the k-means

seeds are chosen semi-randomly.

❑ Moreover, the average standard deviation across the points in each cluster is lower

than the corresponding standard deviation for the entire point cloud in the same

colour space.

❑ Later we will show that these smaller standard deviations lead to better rate-

distortion performance for RAHT-KLT.

Proposed Colour-Based Clustering
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3 out of k = 8 clusters obtained from k-means applied on average Y, U, V values. 

Average YUV standard deviations for each cluster, using only the points in each cluster, (left to right): 11.55, 11.81, 7.35.

Compare to average YUV standard deviation across all 𝑁𝑝 input points of Thaidancer = 23.30.



❑ We demonstrate that Robust Principal Component Analysis (RPCA) [13] can be

used on our proposed colour clusters, to successfully separate the specular and

diffuse components.

❑ RPCA decomposes a data matrix 𝐌ϵℝ𝑛1×𝑛2 into a low-rank approximation matrix

𝐋𝟎 and a sparse error matrix 𝐒𝟎, such that 𝐌 can be recovered as 𝐌 = 𝐋𝟎 + 𝐒𝟎.

❑ The inverse problem, of recovering 𝐋𝟎 and 𝐒𝟎 from 𝐌, can be formulated as a

Principal Component Pursuit (PCP) optimisation problem:

min
𝐋,𝐒ϵℝ𝑛1×𝑛2

𝐋 ∗ + 𝜆 𝐒 1 subject to 𝐋 + 𝐒 = 𝐌,

where 𝐋 ∗ is the nuclear norm of 𝐋 (sum of singular values of 𝐋), 𝐒 1 is the ℓ1

norm of 𝐒 (sum of all absolute values in matrix 𝐒), and 𝜆 = 1/ 𝑛(1), where

𝑛(1) = max(𝑛1, 𝑛2).

❑ We solve the PCP problem by using the Augmented Lagrangian Multiplier (ALM)

method with the Alternating Direction Method of Multipliers (ADMM), similarly to

[13]. (Please see our paper and [13] for mathematical details of these methods.)

[13] E. J. Candès, X. Li, Y. Ma, and J. Wright, “Robust principal component analysis?,” Journal of the ACM, vol. 58, no. 3, pp. 11:1–11:37, May 2011.

Proposed Specular/Diffuse Component 

Separation with RPCA
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❑ We apply RPCA separately on each of our proposed colour-based point cloud

clusters. For a cluster with 𝑁𝑝𝑐𝑙𝑢𝑠𝑡 points (𝑁𝑝𝑐𝑙𝑢𝑠𝑡 ≪ 𝑁𝑝), the 𝐌 input to RPCA is the

𝑁𝑝𝑐𝑙𝑢𝑠𝑡 × 𝑁𝑐 colour matrix for each colour channel (R, G, B) separately.

❑ We found that better R-D results for RAHT-KLT are achieved when RPCA is applied

in RGB colour space than in YUV, even though RAHT-KLT itself is applied in YUV

space.

❑ To separate the specular points from the diffuse, we must rely on threshold values to

decide what constitutes a significant enough error in 𝐒 for the corresponding point to

be considered “specular”. For the work in this paper, this threshold is the upper

quartile (75th percentile) of the sorted sums of absolute values in 𝐒 (summed across

the 𝑁𝑐 columns for each row of 𝐒).

❑ We compute separate 𝐒 thresholds for the R, G, and B colour channels in each

cluster. Rows with sums above the threshold in any colour channel represent the

“specular” points in the cluster. The remaining points are said to be “diffuse”,

meaning that for these points the colours do not vary (much) across the 𝑁𝑐

viewpoints.

Proposed Specular/Diffuse Component 

Separation with RPCA
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❑ Experimentally, we have found our assumptions to be true: we are indeed able to

obtain a low-rank matrix 𝐋 and a sparse matrix 𝐒 by applying RPCA on our point

cloud clusters.

❑ As expected, rank(𝐋) is higher and the sparsity of 𝐒 (% of 0 values) is lower for

clusters that contain more specular regions. In the examples below, since Clusters

2 and 5 contain regions with more specular highlights, their 𝐒 sparsities are lower

and 𝐋 ranks higher than Cluster 3, which contains more diffuse regions.

Proposed Specular/Diffuse Component 

Separation with RPCA
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3 out of k = 8 clusters obtained from k-means applied on average Y, U, V values. 

Average (over R, G, and B components) ranks of 𝑳 (left to right): 6, 2, 6.

Average sparsities (% 0 values) of 𝑺 (left to right): 31.73, 58.72, 26.99.



❑ Examples of specular regions identified in Cluster 2 of Thaidancer are shown below, for 3

different camera viewpoints.

❑ We see that meaningful segmentations are produced, as the chosen specular points have

noticeably varying colours from different viewpoints.

❑ Next we will show the compression benefits of doing such a separation before applying RAHT-

KLT.

Proposed Specular/Diffuse Component 

Separation with RPCA
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❑ Applying RAHT-KLT separately on point

cloud clusters containing similar colour

values indeed produces better R-D results

than when applying RAHT-KLT on the

entire plenoptic point cloud at once. This

was shown consistently in all our tests.

❑ When these point clouds contain highly

specular regions (e.g., Thaidancer), it is

further beneficial to separate each cluster

into specular and diffuse sub-clouds, then

encode each separately with RAHT-KLT.

❑ When the input point cloud does not

contain highly specular regions, there are

no obvious additional R-D benefits of

specular/diffuse separation on top of the

prior clustering.



❑ In this paper, we showed that the rate-distortion performance of the RAHT-KLT coder for

colour compression of plenoptic point clouds [6, 7] suffers if the colour variation across the

input points is high.

❑ We demonstrated that better rate-distortion results can be achieved if the point cloud is first

subdivided into clusters based on similar colour values (e.g., by using k-means) and RAHT-

KLT is applied on each cluster separately.

❑ We proposed a method to separate the specular and diffuse points in each cluster, by

using RPCA, and showed that for point clouds containing highly specular regions, applying

RAHT-KLT on the specular and diffuse sub-clouds separately further improves the R-D

results.

❑ We showed, for the first time, rate-distortion results for RAHT-KLT on the 12-bit geometry

8iVSLF static point clouds, which were recently contributed to MPEG as the first plenoptic

point cloud dataset [10].

[6] G. Sandri, R. de Queiroz, and P. A. Chou, “Compression of plenoptic point clouds using the region-adaptive hierarchical transform,” in 2018 25th IEEE

International Conference on Image Processing (ICIP), Oct. 2018, pp. 1153–1157.

[7] G. Sandri, R. L. de Queiroz, and P. A. Chou, “Compression of plenoptic point clouds,” IEEE Transactions on Image Processing, vol. 28, no. 3, pp. 1419–

1427, Mar. 2019.

[10] M. Krivokuća, P. A. Chou, and P. Savill, “8i voxelized surface light field (8iVSLF) dataset,” input document m42914, ISO/IEC JTC1/SC29 WG11

(MPEG), Ljubljana, Slovenia, Jul. 2018.
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❑ We assume a lossless geometry, but that the decoder knows which points belong to which

cluster, so that the correct colours can be assigned to the points. In practice, this could be

achieved by using the same clusters for colour and geometry coding. This would not require

sending any extra signalling bits, except for the negligible cost of a flag indicating the start

of a new cluster in the bitstream. This would also make the entire encoding and decoding

processes parallelisable.

❑ The bitrates presented in our paper comprise only the colour bits: the RLGR-encoded

RAHT coefficients and the covariance data, as in [6, 7].

❑ The covariance data includes 𝑁𝑐(𝑁𝑐 + 1)/2 elements (32 bits each) per Y/U/V channel,

per sub-cloud.

❑ The total bitrates for RAHT-KLT applied on sub-clouds are the sums of colour bits across all

the sub-clouds, divided by 𝑁𝑝 and 𝑁𝑐. The PSNR values also account for all the sub-

clouds.

❑ The same PSNR computation and RGB→YUV conversion is used as in [6, 7].

❑ The R-D curves are obtained by exponentially varying the RAHT coefficients’ quantization

stepsize from 1.5 to 300.

[6] G. Sandri, R. de Queiroz, and P. A. Chou, “Compression of plenoptic point clouds using the region-adaptive hierarchical transform,” in 2018 25th IEEE

International Conference on Image Processing (ICIP), Oct. 2018, pp. 1153–1157.

[7] G. Sandri, R. L. de Queiroz, and P. A. Chou, “Compression of plenoptic point clouds,” IEEE Transactions on Image Processing, vol. 28, no. 3, pp. 1419–

1427, Mar. 2019.
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