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Motivation

• Conditional mutual information (CMI) appears in many
applications, for example:
• It characterizes the capacity of some communication channels

• It is the basis for defining notions of causal influence

• Although there are conventional methods to estimate the
CMI, they suffer from the curse of dimensionality

• Recent studies suggest neural networks to be used to estimate
information-theoretic quantities such as mutual information
(MI)

• The extensions to estimate the CMI is not trivial and is
addressed in this work
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CMI as channel capacity

• CMI characterizes the capacity of communication channels
such as:
• Relay channel
• Random state channel
• Degraded wiretap channel (DWTC)

• The secrecy capacity of DWTC is I (X ;Y |Z )

M Encoder p(y |x) Decoder

p(z |y) Zn

M̂
X n Y n
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Background Batch construction The neural estimator Summary

Definition

• For continuous random variables in X such that
(X ,Y ,Z ) ∼ p(x , y , z), the CMI is defined as below

Definition

I (X ;Y |Z ) :=Ep(z)

[
D
(
p(x , y |Z ) || p(x |Z ) p(y |Z )

)]
=

∫ ∫ ∫
p(x , y , z) log

p(x , y , z)

p(x |z)p(y , z)
dxdydz
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Background Batch construction The neural estimator Summary

Estimation of CMI

Several estimators have been proposed to estimate the CMI
including:

• Parametric estimators: A model is assumed for the data, the
parameters of the model are estimated, and CMI is computed

• Kernel methods: The densities are computed as sums of
kernel functions and the estimated densities are plugged into
the expression of CMI

• Partitioning methods: The space is partitioned into cells
and the number of samples in each cell are counted to derive
the estimator for CMI
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Estimation of CMI (cont’d)

• k-nearest neighbor (k-NN) estimator: In this method the
parameter k determines the radius of the ball around a given
point in the space that captures all the k nearest samples to
that point.

• There is a well-known estimator for MI proposed in (Kraskov
et al., 2004)1 also know as KSG.

• To estimate CMI, extensions of KSG have been proposed such
as (Runge et al., 2017)2

1Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. “Estimating mutual information”. In: Physical
Review E (2004).

2Jakob Runge. “Conditional independence testing based on a nearest-neighbor estimator of conditional mutual
information”. In: arXiv:1709.01447 (2017).
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Neural Estimators for MI and CMI

• Neural estimators: The methods are based on variational
bounds for relative entropy

• An estimator for MI was proposed by (Belghazi et al., 2018)3

• This line of work was extended in (Mukherjee et al., 2019)4 to
estimate CMI

3Mohamed Ishmael Belghazi et al. “MINE: Mutual Information Neural Estimation”. In: 35th Int. Conf. Mach.
Learn. (ICML). 2018.

4Sudipto Mukherjee, Himanshu Asnani, and Sreeram Kannan. “CCMI: Classifier based Conditional Mutual
Information Estimation”. In: arXiv:1906.01824 (2019).
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Variational bounds

• The following lower bound holds for the relative entropy, and
it is known as Donsker-Varadhan (DV) bound5:

Definition (DV bound)

D(p||q) ≥ Ep(x)[f (X )]− log Eq(x)[ef (X )]

• A weaker lower bound can be derived which is also
conventional to use (denoted here as NWJ bound)

Definition (NWJ bound)

D(p||q) ≥ Ep(x)[f (X )]− e−1Eq(x)[ef (X )]

5M. D Donsker and S. S. Varadhan. “Asymptotic evaluation of certain Markov process expectations for large
time. IV”. In: (1983).
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Variational bounds for CMI

Definition (DV bound for CMI)

I (X ;Y |Z ) ≥ Ep(x ,y ,z)[f (X ,Y ,Z )]− log Ep(x |z)p(y ,z)[ef (X ,Y ,Z)]

• DV: The bound is tight for f ∗DV (·) = log p(x ,y ,z)
p(x |z)p(y ,z)

Definition (NWJ bound for CMI)

I (X ;Y |Z ) ≥ Ep(x ,y ,z)[f (X ,Y ,Z )]− e−1Ep(x |z)p(y ,z)[ef (X ,Y ,Z)]

• NWJ: The bound is tight for f ∗NWJ(·) = 1 + log p(x ,y ,z)
p(x |z)p(y ,z)
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Challenges of Estimating CMI

Consider n triples (x , y , z) are available s.t. (X ,Y ,Z ) ∼ p(x , y , z).
Estimation of CMI using the introduced variational bounds
encounters the following challenges:

• Since the density functions p(x , y , z) and p(x |z)p(y , z) are
not available, to estimate the CMI, we compute the
expectations using sample averages

Let Bbjoint and Bbprod be respectively batches of b triples
(x , y , z) such that (X ,Y ,Z ) ∼ p(x , y , z) and (X ,Y ,Z ) ∼
p(x |z)p(y , z)

• To compute a tight lower bound, it is required to properly
approximate the density ratio Γ∗(x , y , z) = p(x ,y ,z)

p(x |z)p(y ,z)
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Construct sample batch
• The joint batch Bbjoint : Let Ib be a set of b random distinct

integers in [1 : n]. For each i ∈ Ib, we put (xi , yi , zi ) in the
batch.

X Y Z

Dataset

X Y Z

Bbjoint
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Construct sample batch (cont’d)
• The product batch Bbprod : We use the notion of k-NN to

re-sample the dataset such that the samples are distributed
according to p(x |z)p(y , z).
Let Im be a set of m random distinct integers in [1 : n]. For
each i ∈ Im, let Azi be the set of indices of k nearest
neighbors of zi in zn. We put all triples (xj , yi , zi ) for i ∈ Im
and j ∈ Azi .

X Y Z

xj0 yi zii = 2

xj1 *

xj2 *

Dataset

X Y Z
xj0 yi zi

xj1 yi zi

xj2 yi zi

Bbprod
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Neural network classifier
• To approximate the density ratio Γ∗(x , y , z), (Mukherjee et al.

2019)6 proposed using a neural classifier ωθ parameterized
with θ such that:

• The input of the network is a triple (x , y , z) that either is
generated according to p(x , y , z) or p(x |z)p(y , z)

• The neural network classifies the input based on its density

• The last layer of the neural network is a sigmoid function

X

Y

Z

ωθ(x , y , z)

6Sudipto Mukherjee, Himanshu Asnani, and Sreeram Kannan. “CCMI: Classifier based Conditional Mutual
Information Estimation”. In: arXiv:1906.01824 (2019).
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Loss function
• The loss function to optimize θ is the expected binary cross

entropy loss

L(ωθ) := −Ep(q)p(x ,y ,z|q)

[
Q logωθ(X ,Y ,Z )+

(1− Q) log(1− ωθ(X ,Y ,Z ))
]
,

where Q ∈ {0, 1} is the corresponding label of an input

Lemma

Let ω∗(x , y , z) be the minimizer of L(ω). Then:

Γ∗(x , y , z) =
ω∗(x , y , z)

1− ω∗(x , y , z)
.

• So by minimizing L(ωθ), with sufficient samples and proper
network, we can approximate the density ratio Γ∗(x , y , z) and
accordingly f ∗DV and f ∗NWJ
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CMI neural estimators

• In practice, we don’t have L(ωθ) and we compute the empirical
loss L2b(ωθ) using the training data batches Bbjoint and Bbprod

• θ̂ = arg minθ L2b(ωθ) and we obtain Γ̂(x , y , z) =
ωθ̂(x ,y ,z)

1−ωθ̂(x ,y ,z)

Definition

Î b,θ̂DV :=
1

b

∑
(x ,y ,z)∈Bbjoint

log Γ̂(x , y , z)− log
1

b

∑
(x ,y ,z)∈Bbprod

Γ̂(x , y , z),

Î b,θ̂NWJ :=1 +
1

b

∑
(x ,y ,z)∈Bbjoint

log Γ̂(x , y , z)− 1

b

∑
(x ,y ,z)∈Bbprod

Γ̂(x , y , z).

• While Î b,θ̂NWJ is an unbiased estimator, Î b,θ̂DV is biased
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The bias problem

• In practice, the estimators are computed for several trials and
the results are averaged

Î b,θ̂DV =
1

T

T∑
t=1

Î b,θ̂DV (t) & Î b,θ̂NWJ =
1

T

T∑
t=1

Î b,θ̂NWJ(t)

• So while Î b,θ̂NWJ estimates a tight lower bound for CMI, Î b,θ̂DV is
neither estimating a lower bound nor an upper bound
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Experimental results
DWTC

• Gaussian model:


X ∼ N (0,P)

Y ∼ N (X , σ2
1)

Z ∼ N (Y , σ2
2)

X +

N1

+

N2

Z
Y

• The secrecy capacity is

I (X ;Y |Z ) =
1

2
log

(
1 +

P

σ2
1

)
− 1

2
log

(
1 +

P

σ2
1 + σ2

2

)
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Experimental results
Estimation performance

• P = 100, σ1 = 1, n = 2e4 and b = n/2

• The results are for the DV bound, averaged for T = 20 trials
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Experimental results
Bias problem

• P = 100, σ1 = 1, σ2 = 5 and b = n/2

• To verify the bias problem, Î b
′,θ̂

DV and Î b
′,θ̂

NWJ are computed with
batches of size b′ instead
• The results are averaged for T = 20 trials, and repeated 50

times for the box plots

b'=40 
 n=8e3
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 n=8e3

b'=40 
 n=2e4

b'=80 
 n=2e4
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Summary

• The variational bounds enabled proposing neural estimators,
and recent works have shown significant improvements that
can be achieved using these estimators

• The k-NN method for batching shows desirable performance,
and increasing k with respect to n improves the result

• If the intention of the estimation is the CMI, both DV and
NWJ estimators can be used

• If we need a lower bound for CMI, the NWJ estimator is a
more justified method regarding the bias problem

• As a future direction, we are improving the k-NN batch
construction and we achieved a better performance comparing
to other methods
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