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Motivation

Conditional mutual information (CMI) appears in many
applications, for example:

® |t characterizes the capacity of some communication channels
® |t is the basis for defining notions of causal influence
Although there are conventional methods to estimate the
CMI, they suffer from the curse of dimensionality
Recent studies suggest neural networks to be used to estimate
information-theoretic quantities such as mutual information
(M1)
The extensions to estimate the CMI is not trivial and is
addressed in this work
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CMI as channel capacity

® CMI characterizes the capacity of communication channels
such as:
® Relay channel

® Random state channel
® Degraded wiretap channel (DWTC)
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CMI as channel capacity

® CMI characterizes the capacity of communication channels

such as:

® Relay channel
® Random state channel
® Degraded wiretap channel (DWTC)

® The secrecy capacity of DWTC is I(X; Y|Z)
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Definition

® For continuous random variables in X such that
(X,Y,Z) ~ p(x,y,z), the CMI is defined as below

1(X; Y12) = Eyay | D (p(x,¥12) 1 p(x12) p(¥12) )]
p(x,y,z)
/// p(x,y,z)log (x|z)p(y,z)dXdydz

3/19



Background
0@00000

Estimation of CMI

Several estimators have been proposed to estimate the CMI
including:

® Parametric estimators: A model is assumed for the data, the
parameters of the model are estimated, and CMI is computed
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Estimation of CMI

Several estimators have been proposed to estimate the CMI
including:
® Parametric estimators: A model is assumed for the data, the
parameters of the model are estimated, and CMI is computed
e Kernel methods: The densities are computed as sums of
kernel functions and the estimated densities are plugged into
the expression of CMI
® Partitioning methods: The space is partitioned into cells
and the number of samples in each cell are counted to derive
the estimator for CMI
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Estimation of CMI (cont'd)

¢ k-nearest neighbor (k-NN) estimator: In this method the
parameter k determines the radius of the ball around a given
point in the space that captures all the k nearest samples to
that point.

® There is a well-known estimator for MI proposed in (Kraskov
et al., 2004)! also know as KSG.

® To estimate CMI, extensions of KSG have been proposed such
as (Runge et al., 2017)?

L Alexander Kraskov, Harald Stogbauer, and Peter Grassberger. “Estimating mutual information”.

2 Jakob Runge. “Conditional independence testing based on a nearest-neighbor estimator of conditional mutual

information”.
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Neural Estimators for Ml and CMI

® Neural estimators: The methods are based on variational
bounds for relative entropy
® An estimator for Ml was proposed by (Belghazi et al., 2018)3

® This line of work was extended in (Mukherjee et al., 2019)* to
estimate CMI

3Mohamed Ishmael Belghazi et al. "MINE: Mutual Information Neural Estimation”. In: 35th Int. Conf. Mach.
Learn. (ICML). 2018.

4Sleipto Mukherjee, Himanshu Asnani, and Sreeram Kannan. “CCMI: Classifier based Conditional Mutual
Information Estimation”. In: arXiv:1906.01824 (2019).
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Variational bounds
® The following lower bound holds for the relative entropy, and
it is known as Donsker-Varadhan (DV) bound®:
Definition (DV bound)
D(p||q) > Eyo[f(X)] — log Eqxyle"™]

® A weaker lower bound can be derived which is also
conventional to use (denoted here as NWJ bound)

Definition (NWJ bound)

D(pl|q) > Epq[f(X)] — e Egpuy[e" )]

5M. D Donsker and S. S. Varadhan. “Asymptotic evaluation of certain Markov process expectations for large
time. V", In: (1983).
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Variational bounds for CMI

Definition (DV bound for CMI)
/(X' Y|Z) = EP(X:%Z)[f(X? i€ Z)] — log Ep(x\z)p(y,z) [ef(X’Y’Z)]

* DV: The bound is tight for £, (-) = log 2522
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Variational bounds for CMI

Definition (DV bound for CMI)
/(X' Y|Z) = EP(X:%Z)[f(X? i€ Z)] — log Ep(x\z)p(y,z) [ef(X’Y’Z)]

* DV: The bound is tight for £, (-) = log 2522

Definition (NWJ bound for CMI)
/(X' Y‘Z) Z Ep(x,y,z)[f(X, Y, Z)] — e_lEp(X‘z)p(y,z)[ef(X’Y’Z)]

® NWJ: The bound is tight for f,(‘IWJ(-) =14+ |og%

8/19



Background
000000@

Challenges of Estimating CMI

Consider n triples (x, y, z) are available s.t. (X,Y,Z) ~ p(x,y, z).
Estimation of CMI using the introduced variational bounds
encounters the following challenges:
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Challenges of Estimating CMI

Consider n triples (x, y, z) are available s.t. (X,Y,Z) ~ p(x,y, z).
Estimation of CMI using the introduced variational bounds
encounters the following challenges:

e Since the density functions p(x,y, z) and p(x|z)p(y, z) are
not available, to estimate the CMI, we compute the
expectations using sample averages

Let Bﬁ)mt and Bgrod be respectively batches of b triples

(x,y,z) such that (X,Y,Z) ~ p(x,y,z) and (X,Y,Z) ~
p(x|2)p(y, 2)

® To compute a tight lower bound, it is required to properly

approximate the density ratio [*(x,y,z) = %
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Batch construction
°0

Construct sample batch

* The joint batch B

joint

batch.

: Let Zp, be a set of b random distinct
integers in [1: n]. For each i € Z,, we put (xj, yi, zj) in the

=

Dataset

XY Z

joint
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Batch construction
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Construct sample batch (cont'd)

® The product batch Bgmd: We use the notion of k-NN to
re-sample the dataset such that the samples are distributed
according to p(x|z)p(y, z).
Let Z,, be a set of m random distinct integers in [1 : n]. For
each i € Zp,, let A, be the set of indices of k nearest
neighbors of z; in z". We put all triples (x;, y;, z;) for i € Zp,
and j € A,,.

XY Z XY Z
’ X | Vi | zi
i=2|Xo| Yi|zi X | Yi | Zi
] C> X | vi | zi
o b
° Bprod
S &
Xjp &

Dataset 11/19
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Neural network classifier

® To approximate the density ratio [*(x,y, z), (Mukherjee et al.
2019)° proposed using a neural classifier wy parameterized
with € such that:

® The input of the network is a triple (x, y, z) that either is
generated according to p(x,y,z) or p(x|z)p(y, z)
® The neural network classifies the input based on its density

® The last layer of the neural network is a sigmoid function

— 7 we(x,y, 2)

6Sudipto Mukherjee, Himanshu Asnani, and Sreeram Kannan. “CCMI: Classifier based Conditional Mutual
Information Estimation”.
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Loss function

® The loss function to optimize 6 is the expected binary cross
entropy loss

L(ws) = —~Ep(q)p(x.y.zla) [Q logwa(X, Y, Z)+
(1 - Q) |Og(1 - w@(X’ Y, Z))]v
where Q € {0,1} is the corresponding label of an input

Let w*(x,y, z) be the minimizer of L(w). Then:

. w*(x,y,z)
r =
(x.y:2) 1—w*(x,y,2)
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Loss function
® The loss function to optimize 6 is the expected binary cross
entropy loss
L(wg) = —Ep(q)p(x.y.z1a) | Q log wa(X, Y, Z)+
(1 - Q)log(1l —we(X,Y,2))],
where Q € {0,1} is the corresponding label of an input

Let w*(x,y, z) be the minimizer of L(w). Then:

. w*(x,y,z)
r =
(x.y:2) 1—w*(x,y,2)

® So by minimizing L(wp), with sufficient samples and proper
network, we can approximate the density ratio [*(x, y, z) and
accordingly f73,, and fy,,,
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CMI neural estimators

® In practice, we don't have L(wy) and we compute the empirical

loss Lp(wp) using the training data batches Bﬁ,int and Bgrod

W@(X,y,z)
l—UJé(X7y7Z)

) 1 ~ 1 ~
lg\e :=E Z |Ogr(X,y,Z)—|OgE Z I—(Xayaz)7
(X»%Z)EBJ-b (x,y,z)EB?

o )= arg ming Lop(wy) and we obtain f(x,y,z) =

oint prod
Ab7é . ]. ©~ 1 A
INWJ :1+E Z |ogr(XayaZ)_E Z F(x,y,z).
(x,y,z)EBj%i"t (X7y7z)eBgrod

e While I,(’,’VHVJ is an unbiased estimator, lg’\e is biased
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The bias problem

® In practice, the estimators are computed for several trials and
the results are averaged

T T

b 1 b0 .0 b0

Ipy = 72/ v (1) & Inwy = 7Z/NWJ
t=1 t=1

® So while /NWJ estimates a tight lower bound for CMI, IDV is
neither estimating a lower bound nor an upper bound
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Experimental results

DWTC

X ~ N(0, P)
® Gaussian model:{ Y ~ N (X, 0%)

N(Y,03)
Ny Ny

! y
X =(D—"L+D— 7

I\JI\) »—-m

® The secrecy capacity is
1 P 1 P
I(X;Y|Z)= =1 1+— ) — =1 1+ —5——
0v12)= g (14 ) - s (14 o)
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Experimental results

Estimation performance

® P=100, 01 =1, n=2e4 and b= n/2
® The results are for the DV bound, averaged for T = 20 trials

1.6 4 —— True value

L
o N b
L N L

Estimated CMI
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Experimental results

Bias problem
e P=100,01=1,00=5and b=n/2
® To verify the bias problem, IAg\’/G and IA,I\J,,‘}‘?J are computed with
batches of size b’ instead

® The results are averaged for T = 20 trials, and repeated 50
times for the box plots

1.8
1.6
Il e B S L B
O 144
3
s 1.24 °
1S o
= 1.04 o
1]
w1 e True value
0.8 LY
° NW)
0.6 T T T -
b'=40 b'=80 b'=40 b'=80
n=8e3 n=8e3 n=2e4 n=2e4
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Summary

Summary

The variational bounds enabled proposing neural estimators,
and recent works have shown significant improvements that
can be achieved using these estimators

The k-NN method for batching shows desirable performance,
and increasing k with respect to n improves the result

If the intention of the estimation is the CMI, both DV and
NWJ estimators can be used

If we need a lower bound for CMI, the NWJ estimator is a
more justified method regarding the bias problem

As a future direction, we are improving the k-NN batch

construction and we achieved a better performance comparing
to other methods
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