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Motivation

* Although existing approaches consider to exploit 3D scene geometry
information and can infer flow, depth and camera pose in a unified
network, these approaches ignore capturing global channel and spatial
dependencies during feature learning and lack the ability to exploit
rich contextual information.
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Many works are proposed to joint learning of depth, optical flow and camera pose.
However, these approaches ignore capturing global channel and spatial dependencies during
feature learning and lack the ability to exploit rich contextual information.



Our Main Contributions

* We combine an adaptive feature refinement module and a unified
framework for joint learning of optical flow, depth and camera pose
estimation in an unsupervised setting.

* The feature refinement is conducted on both optical flow an depth
tasks for boosting the quality of flow and depth map.

* We observe that our proposed network can achieve comparable results
on KITTI dataset.
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Dataset

KITTI dataset

* Unlabeled monocular image
sequence for training.
(Autonomous Driving Scenarios )
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Quantitative Results (Depth)

Table 1. Performance comparison on KITTI eigen split dataset

Method Training data | AbsRel SqRel RMSE RMSElog | § <1.25 6 <1.25% 4§ <1.25°
Lower the better Higer the better

Eigen et al. [5] Single image 0.203 1.548  6.307 0.282 0.702 0.890 0.958
Zhan et al. [19] Stereo pair 0.144 1.301 5.869 0.241 0.803 0.928 0.969
Godard er al. [7] Stereo pair 0.148 1.344  5.927 0.247 0.803 0.922 0.964
Gave et al. [6] Stereo pair 0.152 1.226  5.849 0.246 0.784 0.921 0.967
Zhou er al. [8] Monocular video | 0.208 1.768  6.856 0.283 0.678 0.885 0.957
Yang et al. [9] Monocular video | 0.156 1.360  6.641 0.248 0.750 0.914 0.969
Mahjourian er al. [11] | Monocular video | 0.163 1.240  6.220 0.250 0.762 0.916 0.968
Yang et al. [10] Monocular video | 0.162 1.352  6.276 0.252 - - -
Yin et al. [12] Monocular video | 0.155 1.296  5.857 0.233 0.793 0.931 0.973
Ours Monocular video | 0.152 1.103  5.608 0.230 0.796 0.935 0.974
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Quantitative Results (Optical flow and camera pose)

Table 2. Performance comparison on KITTI2015 flow train-

ing dataset

Method Supervised | KITTI2015
Train (AEE)
FlowNetS [1] Yes 14.19
FlowNetC [1] Yes 11.49
FlowNet2.0 [2] Yes 10.06
PWC-Net [3] Yes 10.35
Yin er al. |12] No 10.81
Ren er al. [4] No 16.79
Ours No 10.19

Table 3. Absolute Trajectory Error (ATE) on the KITTI

odometry dataset.

Method Seq.09 Seq.10

Mean Odom. 0.032+0.026  0.028=0.023
Zhou er al. |8] 0.021==0.017 0.020=0.015
Mahjourian er al. \I 11] | 0.013=0.010 0.012=0.011
Ours 0.012=0.013 0.012=0.007
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Ablation study

Table 4. Ablation study

Method Depth Flow

Abs Rel SqRel RMSE | AEE
Ours (w/o FR) | 0.155 1.296  5.857 | 10.81
Ours (full) 0.152 1.103  5.608 | 10.19
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Visual Samples (Depth map)
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Visual Samples (Flow map)

Image 2 B Ground truth Yin et al.
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Conclusion

* In this paper, we introduce an adaptive feature refinement into multi-task
learning based framework for depth, optical flow and camera pose
estimation.

* The entire network 1s accomplished in two parts. The first part 1s design to
estimate depth and camera pose, and further calculates rigid flow. The
second part 1s design to estimate the incremental flow. Moreover, the feature
refinement module 1s embedded into depth and flow sub-networks, which
can draw global dependencies along channel and spatial aspects.

* To verify the effectiveness of our method, we conduct comprehensive
experiments on KITTI dataset. The experimental results show that our
model can achieve comparable results on depth, flow and camera pose tasks.



Q&A

If you have any questions, please contact us for more details.
Thank you!

E-mail: zmlshiwo@outlook.com, xiangxuezhi@hrbeu.edu.cn
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