

LEARNING SIGNED GRAPHS FROM DATA

Gerald Matz and Thomas Dittrich

Institute of Telecommunications TU Wien (Austria)

ICASSP 2020

May 5, 2020

Motivation

Signed graphs have positive and negative edge weights to model similarity/dissimilarity, like/dislike, trust/distrust, friend/foe, activation/inhibition

Problem Statement

Given: N objects, M measurements $\rightarrow N \times M$ data matrix

$$\mathbf{X} = \begin{pmatrix} \mathbf{x}_1^T \\ \vdots \\ \mathbf{x}_N^T \end{pmatrix} = \begin{pmatrix} \tilde{\mathbf{x}}_1 \dots \tilde{\mathbf{x}}_M \end{pmatrix} \qquad \begin{cases} N \text{ measurement vectors } \mathbf{x}_i \text{ (rows)} \\ M \text{ graph signals } \tilde{\mathbf{x}}_m \text{ (columns)} \end{cases}$$

Signed graph learning \Longrightarrow find edge weight matrix $\mathbf{W} \in \mathbb{R}^{N \times N}$

$$\begin{cases} W_{ij} = 0, & \text{no edge between nodes } i \text{ and } j \\ W_{ij} > 0, & \text{similarity edge between nodes } i \text{ and } j \\ W_{ij} < 0, & \text{dissimilarity edge between nodes } i \text{ and } j \end{cases}$$

Rationale:

- ullet graph signals $ilde{\mathbf{x}}_1,\,\ldots,\, ilde{\mathbf{x}}_M$ shall be smooth on the graph
- ullet +/- edge between nodes i and j if \mathbf{x}_i and \mathbf{x}_j are similar/dissimilar

NB: unsigned graph learning $(W_{ij} \ge 0)$ has received a lot of attention!

Smoothness/(Dis)similarity Metrics

Signed Laplacian form:

$$\mathbf{x}^T \mathbf{L} \mathbf{x} = \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} |W_{ij}| \cdot \left(x_i - \mathsf{sign}(W_{ij}) x_j\right)^2$$

with signed Laplacian

$$\mathbf{L} = \mathsf{Diag}\{d_1,\ldots,d_N\} - \mathbf{W}, \qquad d_i = \sum_{j=1}^N |W_{ij}|$$

Signed total variation:

$$\|\mathbf{x}\|_{\mathsf{TV}} = \sum_{i=1}^{N} \sum_{j=1}^{N} |W_{ij}| \cdot |x_i - \mathsf{sign}(W_{ij})x_j|$$

Both metrics are small if $x_i \approx x_j$ for $W_{ij} > 0$ and $x_i \approx -x_j$ for $W_{ij} < 0$

Optimization Problem

Unified formulation of cost function:

$$f_p(\mathbf{W}) = \sum_{i=1}^{N} \sum_{j=1}^{N} |W_{ij}| \cdot \|\mathbf{x}_i - \operatorname{sign}(W_{ij})\mathbf{x}_j\|_p^p$$

Optimization problem:

$$\begin{split} \min_{\mathbf{W} \in \mathcal{W}} \ f_p(\mathbf{W}) + \frac{\mu}{2} \|\mathbf{W}\|_2^2 \\ \mathcal{W} = \left\{ \mathbf{W}: \ 0 \leq |W_{ij}| \leq C_{ij}, & \dots \text{ prior knowledge} \\ a_i \leq \sum_{j=1}^N |W_{ij}| \leq b_i, & \dots \text{ control node degrees} \\ \sum_{j=1}^N |W_{ij}| = 2N \right\} & \dots \text{ weight normalization} \end{split}$$

This problem is not convex . . .

Solution

Sign-magnitude representation: $W_{ij} = |W_{ij}| \operatorname{sign}(S_{ij}) = \widetilde{W}_{ij} S_{ij}$

$$\implies \min_{\substack{\widetilde{W}_{ij} \in \mathcal{W} \\ S_{ii} \in \{i-1,1\}}} \sum_{i=1}^{N} \sum_{j=1}^{N} \widetilde{W}_{ij} \|\mathbf{x}_{i} - S_{ij}\mathbf{x}_{j}\|_{p}^{p} + \frac{\mu}{2} \widetilde{W}_{ij}^{2}$$

Sign optimization has explicit solution:

$$\min_{S_{ij} \in \{-1,1\}} \|\mathbf{x}_i - S_{ij}\mathbf{x}_j\|_p^p = D_{ij}^{(p)} \triangleq \min \left\{ \underbrace{\|\mathbf{x}_i - \mathbf{x}_j\|_p^p}_{S_{ij} = 1}, \underbrace{\|\mathbf{x}_i + \mathbf{x}_j\|_p^p}_{S_{ij} = -1} \right\}$$

Magnitude optimization amounts to ordinary unsigned graph learning:

$$\min_{\widetilde{\mathbf{W}} \in \mathcal{W}} \operatorname{tr}\{\widetilde{\mathbf{W}}\mathbf{D}^{(p)}\} + \frac{\mu}{2} \|\widetilde{\mathbf{W}}\|_2^2$$

... quadratic problem, can be solved efficiently e.g. using ADMM

Illustrative Example

$$N=3$$
, $\mathbf{x}^T=(1,-2,4)$, $p=1$, no weight and degree constraints

$$|x_1 - x_2| = 3$$

 $|x_1 + x_2| = 1$
 $S_{12} = -1, \ D_{12}^{(1)} = 1$

$$|x_1 - x_3| = 3$$

 $|x_1 + x_3| = 5$
 $S_{13} = 1, D_{13}^{(1)} = 3$

$$|x_2 - x_3| = 6$$

 $|x_2 + x_3| = 2$
 $S_{23} = -1, \ D_{23}^{(1)} = 2$

Waterfilling solution:

$$W_{ij} = \frac{S_{ij}}{\mu} \max \left\{ 0, \omega - D_{ij}^{(1)} \right\}$$

Application 1: Signal Reconstruction

Given: K noisy samples $y_i = s_i + z_i$, $i \in \mathcal{S}$

Goal: reconstruct bandpass signal s of length N=128

Laplacian regression: $\mathbf{s}^{\text{opt}} = \arg\min_{\mathbf{s}} \mathbf{s}^T \mathbf{L} \mathbf{s} + \nu \sum_{i \in \mathcal{S}} (y_i - s_i)^2$

Signed/unsigned graph learned from M examples $\tilde{\mathbf{x}}_m = \mathbf{s}_m + \mathbf{z}_m \ (p=2)$

Reconstruction Performance

Reconstruction MSE obtained via 1000 Monte Carlo trials

- signed outperforms unsigned by typically 7 dB
- unsigned requires twice as many samples as signed

Application 2: Clustering

Given: N = 1000 points \mathbf{x}_i of the two-moon model (M = 2)

Goal: Find cluster labels $\{-1,1\}^N$

Total variation clustering: $\mathbf{y}^{\text{opt}} = \underset{\mathbf{y} \in [-1,1]^N}{\arg \min} \|\mathbf{y}\|_{\text{TV}}$

Signed/unsigned graph learned from \mathbf{x}_i with p=1

Clustering Performance

Misclassification rate E obtained from 100 Monte Carlo runs

- ullet signed clustering: average $E=6.42\pm3.01$, worst-case E=16
- \bullet unsigned clustering: average $E=22.64\pm74.92$, worst-case E=500
- \bullet kNN clustering: average $E=93.75\pm133.4$, worst-case E=500

Conclusion

- Signed graphs offer increased modeling flexibility
- Proposed learning strategy for signed graphs
 - based on notions of (dis)similarity and smoothness
 - non-convex problem, can be reduced to unsigned learning
 - efficient implementation
- Application examples
 - signal sampling and reconstruction
 - data clustering
- at same graph sparsity, signed outperforms unsigned
- Future work: distinct penalty and constraints for +/- edges

THANKS FOR WATCHING!

Get in touch with me!

Email: gerald.matz@tuwien.ac.at

Skype: gerald_matz

#staysafe