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Motivation

Signed graphs have positive and negative edge weights to model
similarity /dissimilarity, like/dislike, trust/distrust, friend/foe,
activation/inhibition

friend-foe
network for
16 Guinea
highland
tribes

. E. coli gene
l transciption
) network

trust/distrust network for
1000 users on Bitcoin Alpha



Problem Statement

Given: N objects, M measurements — N x M data matrix

X1
X _ (% %) N measurement vectors x; (rows)
= : = (X1 - XM . ~
<7 M graph signals X,,, (columns)

Signed graph learning == find edge weight matrix W ¢ RV*VN
Wi; =0, no edge between nodes i and j

Wi >0, similarity edge between nodes ¢ and j

W;; <0, dissimilarity edge between nodes ¢ and j

Rationale:
e graph signals X1, ..., X7 shall be smooth on the graph
e +/— edge between nodes i and j if x; and x; are similar/dissimilar

NB: unsigned graph learning (W;; > 0) has received a lot of attention!



Smoothness/(Dis)similarity Metrics

Signed Laplacian form:

x'Lx = ZZ‘WM i — sign(W, 13)171)2

1=15=1
with signed Laplacian

N
L:Diag{dl,...,dN}—W, dl:Z|WZ]|
j=1

Signed total variation:
Ix[lrv = Z Z [Wij| - |zi — sign(Wi;) ;]
1=1 j=1

Both metrics are small if z; ~ x; for W;; > 0 and z; = —z; for W;; <0



Optimization Problem

Unified formulation of cost function:

N N
Fo(W) =" "Wl - [|x; — sign(Wig)x; 5

i=1 j=1

Optimization problem:

. H 2
Jnin fp(W) + 5 W13

W= {W ¢ 0 < |Wyy| <Gy, ... prior knowledge
N
a; < Z |[W;;| <b;, ... control node degrees
j=1
N
Z \Wij| = 2N} ... weight normalization
j=1

This problem is not convex ...



Solution

Sign-magnitude representation: W;; = |W;;|sign(S;;) = VNVZSZ

N N "
: 7 7a 172
==p  min E E Wz]”Xz — S@ijHg + EW”
Wig€W =1 j=1
Sije{fl,l}

Sign optimization has explicit solution:

: _ @ a_ .
o min b = Sl = D £ min { [ — g1 i+ |

Si,j:1 Sij:—l

Magnitude optimization amounts to ordinary unsigned graph learning:

‘min tr{WD(p)} + HHVVH%
Wew 2

... quadratic problem, can be solved efficiently e.g. using ADMM



lllustrative Example

N=3xT'=(1,-2,4),p

|$1 —$2| 23
|.CL'1 +.CL'2| =1

Spp=—-1, D) =

|1’1 —5173| = 3
|ZL‘1 +$3| =5
Sis=1, DY =3

|1‘2—$3| =6
|.CL'2+.CL‘3| =2

Sps = —1, D) =

=1, no weight and degree constraints

Waterfilling solution:

W,-j— Sij max{() w— D(l)}




Application 1: Signal Reconstruction

Given: K noisy samples y; =s; +2;, 1€ S

Goal: reconstruct bandpass signal s of length N = 128

Laplacian regression: s = argmings’Ls +v Y, (yi — 5:)?
Signed/unsigned graph learned from M examples X,,, = S;, + 2, (p = 2)

true signal signed graph reconstruction

noisy samples
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Reconstruction Performance

Reconstruction MSE obtained via 1000 Monte Carlo trials
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e signed outperforms unsigned by typically 7dB

e unsigned requires twice as many samples as signed



Application 2: Clustering

Given: N = 1000 points x; of the two-moon model (M = 2)
Goal: Find cluster labels {—1,1}¥

Total variation clustering: y° = argmin_|ly|ltv
ye _1a1]

Signed/unsigned graph learned from x; with p =1

4
signed clustering unsigned clustering



Clustering Performance

Misclassification rate E obtained from 100 Monte Carlo runs
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o signed clustering: average E = 6.42 + 3.01, worst-case F = 16

e unsigned clustering: average E = 22.64 £ 74.92, worst-case E = 500
o kNN clustering: average E = 93.75 £ 133.4, worst-case 2 = 500
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Conclusion

Signed graphs offer increased modeling flexibility

Proposed learning strategy for signed graphs
— based on notions of (dis)similarity and smoothness
— non-convex problem, can be reduced to unsigned learning
— efficient implementation

Application examples
— signal sampling and reconstruction
— data clustering

at same graph sparsity, signed outperforms unsigned

Future work: distinct penalty and constraints for +/— edges
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