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1 Introduction

Spoken Language Understanding system for Command-and-Control applications
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1 Introduction
Conventional SLU

Problems:
I Dysarthric speech
I Strong dialects
I Domain specific

4 Presented at the 45th International Conference on Acoustics, Speech, and Signal Processing



1 Introduction
Direct speech-to-intent

Idea: Build model from scratch with demonstrations from the user

→ All kinds of speech
→ Language and domain independent
→ User can choose his/her phrases
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1 Introduction
E2ESLU Approaches:
I Non-Negative Matrix Factorization (NMF) [1]
I Encoder-Decoder neural networks [2]
I Capsule networks [3]

Key points:
→ Fast learning models (due to explicit user dependency)
→ High asymptotic accuracy

[1] B. Ons, J.F. Gemmeke, H. Van hamme, “Fast vocabulary acquisition in an nmf-based self-learning vocal user interface,” Computer Speech and
Language, vol. 28, no. 4, pp. 997 – 1017, 2014
[2] D. Serdyuk, Y. Wang, C. Fuegen, A. Kumar, B. Liu, Y. Bengio, “Towards end-to-end spoken language understanding,” in IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018, pp. 5754–5758
[3] V. Renkens, H. Van hamme, “Capsule networks for low resource spoken language understanding,” Interspeech, Sep 2018
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1 This work
I Analysis of the capsules in the proposed architecture for E2ESLU [1],

more specifically how the different intents are represented

I Introducing multitask learning in the capsule network by applying
task-specific regularisations to the output capsules
→ Speaker recognition (generalisable: extra designer possibilities!)

I Performance comparison between the baseline and the multitask model on
small and large datasets, when used by multiple speakers

[1] V. Renkens, H. Van hamme, “Capsule networks for low resource spoken language understanding,” Interspeech, Sep 2018
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2 Capsule Networks: main idea

S. Sabour, N. Frosst, G. E Hinton, “Dynamic routing
between capsules,” in Proceedings NIPS, 2017.

I Capsule: activation vector
• Length = probability object/pattern

is present
• Orientation = instantiation

parameters of object/pattern
I Lower layer capsules predict

output of next layer capsule
• ûj|i = Wijui

• Dynamic routing: multiple lower
layer capsules should agree on the
higher level property

• Parts → Whole
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2 Baseline Capsule Network Model
I Every primary capsule corresponds to a

word/subword pattern in the input features

I Every output capsule corresponds to a specific
label
• Semantic frame is filled from all output capsules

that are “active” (= length vector close to 1)

I Training: max-margin loss on output vectors v
• Ll =∑K

k=1 Tk max(0, 0.9− ‖vk‖) + (1− Tk) max(0, ‖vk‖ − 0.1)

Image: V. Renkens, H. Van hamme, “Capsule networks for low resource spoken language under-
standing,” Interspeech, Sep 2018
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2 Multitask Model – 1
I Average capsule: combine information from every output capsule, for

every output dimension separately

z =

N∑
i=1

vi

N∑
i=1
‖vi‖
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2 Multitask Model – 2
I Speaker recognition: map the average capsule to speaker probabilities

with a single softmax layer
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2 Multitask Model – 3
I Define speaker loss with cross-entropy on predicted speaker probabilities
Ls = −∑M

i=1 tilog(Pi)

I Add with regularisation parameter to total loss
Ltot = Ll + λsLs
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3 Datasets
I GRABO
• Commands to robot, e.g. “drive quickly to the right”, “drive slowly a little bit

forward”, “pointer on”, “grab object”
• 33 output labels
• 10 Dutch, 1 English speaker
• ca 6000 utterances in total

I Fluent Speech Commands
• Smart home, virtual assistant, e.g. “turn on the lights in the bedroom”, “turn up

the volume”, “I need to practice my German, change the language”
• 31 output labels
• 97 English speakers
• ca 30000 utterances in total
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3 Figures

I Learning curves created by cross-validation experiments
→ performance in function of amount of training data
• F1-measure for label classification
• Percentage of correctly decoded speakers

I Distinction between
• Speaker dependent experiments: perform experiment on data of one speaker only,

average over results of all speakers
• Speaker independent experiments: perform experiment on data of all speakers

mixed together
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4 Dimension Analysis of Baseline Model
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I Comparison for different
output dimension (speaker
dependent experiment on
GRABO)

I Vector of dimension 2
suffices to represent the
different intents
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4 Performance of Multitask Model on GRABO
(speaker independent experiments)
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4 Dimension Analysis of Multitask Model
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I The applied regularisation
has given meaning to the
orientation of the output
vectors (= speaker
identity)
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4 Performance of Multitask Model on Fluent Speech
Commands (speaker independent experiments)

0 5000 10000 15000 20000 25000 30000
# Examples

0.6

0.7

0.8

0.9

1.0

F1

multitask model
baseline model

Intent Recognition

0 5000 10000 15000 20000 25000 30000
# Examples

0.5

0.6

0.7

0.8

0.9

1.0

%
 c

or
re

ct
ly

 d
ec

od
ed

 sp
ea

ke
rs

Speaker Recognition
21 Presented at the 45th International Conference on Acoustics, Speech, and Signal Processing



5 Overview

1 Introduction

2 Model

3 Data

4 Results

5 Conclusion
22 Presented at the 45th International Conference on Acoustics, Speech, and Signal Processing



5 Conclusion
I The regularisation in the multitask model has given an interpretable

meaning to the orientation of the activation vectors of the output capsules
→ Speaker-ID

I Multitask learning of speaker-ID improved the performance of the capsule
network on the larger, challenging, Fluent Speech Commands dataset
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THE END

Thank you for your attention.
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