
Back-to-Back Butterfly Network, an Adaptive Permutation Network for New

Communication Standards

• Efficient method to find out a solution for a given

permutation using Back-to-Back Butterfly Network

Objective Applications

Collect all the possible paths

Back-to-Back Butterfly Network

Solution with Gecode

Collect all possible paths

that transfer
- x3 to z1

- x2 to z0

- x1 to z3

- x0 to z2

Every Mij (i=0,1,2 and

j=0,1,2,3) is represented

by its index j.

The number of possible

paths for each case is

equal to the number of

inputs N=4.

From every set of paths,

one non-conflicting path

should be selected.

• LDPC and NB-LDPC codes

• 5G LDPC codes

Mitigation of the number of collected paths

Hassan Harb and Cyrille Chavet

UBS, Lab-STICC, Lorient France

Methodology

• Algorithmic Optimization

• Solver tools modeling

[1] https://www.gecode.org

[2] S. L. X. Chen and V. Akella, “Qsn : A simple circular-shift network forreconfigurable quasi-cyclic ldpc decoders”, IEEE Trans. on Circuits andSystems II: Express Briefs, vol. 57, no. 10,

pp. 782–786, Oct 2010.

[3] E. Boutillon and H. Harb, “Extended barrel-shifter for versatile qc-ldpcdecoders”, IEEE Wireless Communications Letters, pp. 1–1, 2020.

IEEE ICASSP Conference, Barcelona, Spain, May 4-8 2020

Example with N=4 inputs (2*log2(N)-1 stages):

Permutation Example

Mij - Multiplexer

M03

M02

M01

M00

M13

M12

M11

M10

M23

M22

M21

M20

x3

x2

x1

x0

z3

z2

z1

z0

Conflict possibility:

x3→z1, x2→z0, x1→z3, x0→z2

M03

M02

M01

M00

M13

M12

M11

M10

M23

M22

M21

M20

x3

x2

x1

x0

z3

z2

z1

z0

Conflict-free:

x3→z1, x2→z0, x1→z3, x0→z2

M03

M02

M01

M00

M13

M12

M11

M10

M23

M22

M21

M20

x3

x2

x1

x0

z3

z2

z1

z0

1- The idea is to fix one

path among N=4 paths

associated to x3→z1 (in this

example 3→3→1).

2- The paths with common

multiplexer(s) with the fixed

one are removed (to avoid

conflicts). For example, for

x1→z3, the path 3→3→3 is

removed since the second

multiplexer is in common

with the fixed one.

3- The remaining set of

paths are given to the

solver Gecode [1] in order

to select conflict-free paths.

1. Define a matrix of size 3x3

a00 a01 a02

a10 a11 a12

a20 a21 a22

2. Define domains for each row

Every row is associated to one transition:

- first row {a00, a01, a02} is associated to

transition x2→ z0

- second row {a10, a11, a12} is associated

to transition x1→z3

- third row {a20, a21, a22} is associated to

transition x0 → z2

Domains: {a00, a01, a02} ϵ {{2,2,0}, {0,0,0},

{0,1,0}}, {a10, a11, a12} ϵ {{1,1,3}, {1,0,3}} and

{a20, a21, a22} ϵ {{0,0,2}, {0,1,2}, {2,2,2}}

All the 4! = 24

possible

permutations can

be performed

using this 4x4

Back-to-Back

Butterfly Network

3. Define constraints on each column

In order to prevent any conflict in terms of

multiplexer, the elements of each column

should be disjointly different

More precisely, a00 ≠ a10 ≠ a20, a01 ≠ a11 ≠ a21

and a02 ≠ a12 ≠ a22

4. Launch the constraint solver tool

After defining the matrix, the domains

and the constraints. The constraint solver

Gecode is ready to be launched.

One possible solution is:

{a00, a01, a02} = {0, 0, 0}

{a10, a11, a12} = {1, 1, 3}

{a20, a21, a22} = {2, 2, 2}

Complexity Analysis

N Algorithm Number of MUXs Parallelism

80

Our model 1664 Unlimited

[2] 945 Not possible

[3] 640 Limited

384

Our model 8704 Unlimited

[2] 6273 Not possible

[3] 3840 Limited

Even though the existing circular-shift rotation

networks [2] and [3] require less number of

Multiplexers (MUXs) when compared to our model,

they cannot handle more than one set of

elements with different lengths and different

circular-shift rotation values.

Our model is able to handle such case which is a

key point for high throughput rate architecture.

x3 → z1

3 → 3 → 1

1 → 1 → 1

x2 → z0

2 → 2 → 0

0 → 0 → 0

x1 → z3

1 → 1 → 3

3 → 3 → 3

x0 → z2

0 → 0 → 2

2 → 2 → 2

x3 → z1

3 → 3 → 1

1 → 1 → 1

x2 → z0

2 → 2 → 0

0 → 0 → 0

x1 → z3

1 → 1 → 3

3 → 3 → 3

x0 → z2

0 → 0 → 2

2 → 2 → 2

