Back-to-Back Butterfly Network, an Adaptive Permutation Network for New Communication Standards

Hassan Harb and Cyrille Chavet
 UBS, Lab-STICC, Lorient France

Collect all the possible paths

Mitigation of the number of collected paths

$\mathrm{X}_{3} \rightarrow \mathrm{z}_{1}$	$3 \rightarrow 3 \rightarrow 1$
	$1 \rightarrow 1 \rightarrow 1$
$\mathrm{X}_{2} \rightarrow \mathrm{z}_{0}$	$2 \rightarrow 2 \rightarrow 0$
	$0 \rightarrow 0 \rightarrow 0$
$\mathrm{X}_{1} \rightarrow \mathrm{z}_{3}$	$1 \rightarrow 1 \rightarrow 3$
	$3 \rightarrow 3 \rightarrow 3$
$\mathrm{X}_{0} \rightarrow \mathrm{z}_{\mathbf{2}}$	$0 \rightarrow 0 \rightarrow 2$
	$2 \rightarrow 2 \rightarrow 2$

Collect all possible paths
that transfer

- x_{3} to z_{1}
- x_{2} to z_{0}
- x_{1} to z_{3}
x_{0} to z_{2}
Every $M_{i j}(i=0,1,2$ and
$j=0,1,2,3$) is represented by its index j.
The number of possible paths for each case is equal to the number of inputs $N=4$.
From every set of paths, one non-conflicting path should be selected.

1- The idea is to fix one path among $N=4$ paths associated to $\boldsymbol{x}_{3} \rightarrow \boldsymbol{z}_{1}$ (in this example $\mathbf{3} \rightarrow \mathbf{3} \rightarrow \mathbf{1}$).
2- The paths with common multiplexer(s) with the fixed one are removed (to avoid conflicts). For example, for $x_{1} \rightarrow z_{3}$, the path $3 \rightarrow 3 \rightarrow 3$ is removed since the second multiplexer is in common with the fixed one.
3- The remaining set of paths are given to the solver Gecode [1] in order to select conflict-free paths.

Solution with Gecode

1. Define a matrix of size 3×3

$$
\left[\begin{array}{lll}
a_{00} & a_{01} & a_{02} \\
a_{10} & a_{11} & a_{12} \\
a_{20} & a_{21} & a_{22}
\end{array}\right]
$$

2. Define domains for each row

Every row is associated to one transition: - first row $\left\{a_{00}, a_{01}, a_{02}\right\}$ is associated to transition $x_{2} \rightarrow z_{0}$
second row $\left\{a_{10}, a_{11}, a_{12}\right\}$ is associated to transition $x_{1} \rightarrow z_{3}$
third row $\left\{\mathrm{a}_{20}, \mathrm{a}_{21}, \mathrm{a}_{22}\right\}$ is associated to transition $\mathrm{x}_{0} \rightarrow \mathrm{z}_{2}$
Domains: $\left\{a_{00}, a_{01}, a_{02}\right\} \in\{\{2,2,0\},\{0,0,0\}$ $\{0,1,0\}\},\left\{a_{10}, a_{11}, a_{12}\right\} \in\{\{1,1,3\},\{1,0,3\}\}$ and $\left\{\mathrm{a}_{\mathbf{2 0}}, \mathrm{a}_{\mathbf{2 1}}, \mathrm{a}_{\mathbf{2 2}}\right\} \in\{\{0,0,2\},\{0,1,2\},\{2,2,2\}\}$
3. Define constraints on each column

In order to prevent any conflict in terms of multiplexer, the elements of each column should be disjointly different

More precisely, $a_{00} \neq a_{10} \neq a_{20}, a_{01} \neq a_{11} \neq a_{2}$ and $a_{02} \neq a_{12} \neq a_{22}$
4. Launch the constraint solver tool

After defining the matrix, the domains and the constraints. The constraint solver Gecode is ready to be launched. One possible solution is:

$$
\begin{aligned}
\left\{a_{00}, a_{01}, a_{02}\right\} & =\{0,0,0\} \\
\left\{a_{10}, a_{11}, a_{12}\right\} & =\{1,1,3\} \\
\left\{a_{20}, a_{21}, a_{22}\right\} & =\{2,2,2\}
\end{aligned}
$$

Complexity Analysis

\boldsymbol{N}	Algorithm	Number of MUXs	Parallelism
80	Our model	1664	Unlimited
	$[2]$	945	Not possible
	$[3]$	640	Limited
384	Our model	8704	Unlimited
	$[2]$	6273	Not possible
	$[3]$	3840	Limited

Even though the existing circular-shift rotation networks [2] and [3] require less number of Multiplexers (MUXs) when compared to our model, they cannot handle more than one set of elements with different lengths and different circular-shift rotation values.
Our model is able to handle such case which is a key point for high throughput rate architecture.

