Back-to-Back Butterfly Network, an Adaptive Permutation Network for New Communication Standards

Hassan Harb and Cyrille Chavet **UBS, Lab-STICC, Lorient France**

Objective	Applications	Methodology	
 Efficient method to find out a solution for a given permutation using Back-to-Back Butterfly Networl 	 LDPC and NB-LDPC codes 5G LDPC codes 	 Algorithmic Optimization Solver tools modeling 	
Back-to-Back Butterfly Netw	ork	Permutation Example	
Example with N=4 inputs (2*log ₂ (N)-1 stages):	Conflict possibility:	Conflict-free:	
X_3 M_{03} M_{13} M_{23} Z_3	X_3 M_{03} M_{13}	$M_{23} - Z_3$ $X_3 - M_{03} - M_{13}$ $M_{23} - Z_3$	
All the	e 4! = 24		

multiplexer(s) with the fixed one are removed (to avoid conflicts). For example, for $x_1 \rightarrow z_3$, the path $3 \rightarrow 3 \rightarrow 3$ is removed since the second multiplexer is in common with the fixed one. **3-** The remaining set of paths are given to the solver *Gecode* [1] in order to select conflict-free paths.

	$2 \rightarrow 2 \rightarrow 0$
$\mathbf{X}_2 \rightarrow \mathbf{Z}_0$	$0 \rightarrow 0 \rightarrow 0$
	$1 \rightarrow 1 \rightarrow 3$
$\mathbf{X}_1 \rightarrow \mathbf{Z}_3$	$3 \rightarrow 3 \rightarrow 3$
	$0 \rightarrow 0 \rightarrow 2$
$\mathbf{X}_{0} \rightarrow \mathbf{Z}_{2}$	$2 \rightarrow 2 \rightarrow 2$

Every M_{ii} (*i=0,1,2* and j=0,1,2,3) is represented by its index *j*. The number of possible paths for each case is equal to the number of inputs N=4. From every set of paths, one non-conflicting path should be selected.

Solution with Gecode

1. Define a matrix of size 3x3

 $a_{00} a_{01} a_{02}$ a₁₀ a₁₁ a_{12} $a_{20} a_{21} a_{22}$ 3. Define constraints on each column

In order to prevent any conflict in terms of multiplexer, the elements of each column should be disjointly different

Complexity Analysis

N	Algorithm	Number of MUXs	Parallelism
80	Our model	1664	Unlimited
	[2]	945	Not possible
	[3]	640	Limited
384	Our model	8704	Unlimited
	[2]	6273	Not possible
	[3]	3840	Limited

- Define domains for each row
 - Every row is associated to one transition:
 - first row $\{a_{00}, a_{01}, a_{02}\}$ is associated to transition $x_2 \rightarrow z_0$
 - second row $\{a_{10}, a_{11}, a_{12}\}$ is associated to transition $x_1 \rightarrow z_3$
 - third row $\{a_{20}, a_{21}, a_{22}\}$ is associated to transition $x_0 \rightarrow z_2$

Domains: {a₀₀, a₀₁, a₀₂} e {{2,2,0}, {0,0,0}, $\{0,1,0\}\}, \{a_{10}, a_{11}, a_{12}\} \in \{\{1,1,3\}, \{1,0,3\}\}$ and $\{a_{20}, a_{21}, a_{22}\} \in \{\{0, 0, 2\}, \{0, 1, 2\}, \{2, 2, 2\}\}$

More precisely, $a_{00} \neq a_{10} \neq a_{20}$, $a_{01} \neq a_{11} \neq a_{21}$ and $a_{02} \neq a_{12} \neq a_{22}$

4. Launch the constraint solver tool

After defining the matrix, the domains and the constraints. The constraint solver Gecode is ready to be launched. One possible solution is:

 $\{a_{00}, a_{01}, a_{02}\} = \{0, 0, 0\}$ $\{a_{10}, a_{11}, a_{12}\} = \{1, 1, 3\}$ $\{a_{20}, a_{21}, a_{22}\} = \{2, 2, 2\}$

Even though the existing circular-shift rotation networks [2] and [3] require less number of Multiplexers (MUXs) when compared to our model, they cannot handle more than one set of elements with different lengths and different circular-shift rotation values. Our model is able to handle such case which is a

key point for high throughput rate architecture.

[1] https://www.gecode.org

[2] S. L. X. Chen and V. Akella, "Qsn : A simple circular-shift network forreconfigurable quasi-cyclic ldpc decoders", IEEE Trans. on Circuits and Systems II: Express Briefs, vol. 57, no. 10, pp. 782–786, Oct 2010.

[3] E. Boutillon and H. Harb, "Extended barrel-shifter for versatile qc-ldpcdecoders", IEEE Wireless Communications Letters, pp. 1–1, 2020.

IEEE ICASSP Conference, Barcelona, Spain, May 4-8 2020

