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Motivation – Simulation of Continuous LTI Systems
B Consider a linear time-invariant (LTI) system T mapping an input signal u(t) onto an output signal i(t).

u(t)
T

i(t)

B Input and output are described by continuous variables u(t) and i(t), respectively, which live in an uncountable
set (e.g. R, C, RN). Often, these quantities are currents, voltages, potentials, etc.

B The input and output variables often depend on a continuous parameters t in uncountable set like. R, C, RN , etc.
These parameters t often describes „time“ or „space“ (position).

B Assume there is a mathematical model for T describing the relation between input and output: i(t) = (Tu)(t)

Question:
Assume u is an arbitrary admissible input for T. Is it possible to calculate i(t) = (Tu)(t) on a digital computer?
Problem: Digital computers can exactly solve only finite discrete problems.
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Outline

1. Review of computability theory
− computable numbers, computable functions, Turing machines, etc.

2. The most simple LTI system with non-computable output – Ideal capacitor

3. Classes of input signals with a computable output

4. Summary and outlook
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Computability Analysis
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Computable Rational Numbers
Definition: A sequence {rn}n∈N ⊂Q of rational numbers is said to be computable if there exist recursive functions
a,b,s : N→ N with b(n) 6= 0 and such that

rn = (−1)s(n) a(n)
b(n)

, n ∈ N .

A recursive function a : N→ N is a mapping that is build form elementary computable functions and recursion and
can be calculated on a Turing machine.

Turing machine
• can simulate any given algorithm and therewith provide a

simple but very powerful model of computation.
• is a theoretical model describing the fundamental limits of

any realizable digital computer.
• Most powerful programming languages are called

Turing-complete (such as C, C++, Java, etc.).
Figure taken from Wikipedia

A. M. Turing, “On computable numbers, with an application to the Entscheidungsproblem,” Proc. London Math. Soc., vol. s2-42, no. 1,
1937.
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Computable Real Numbers

B Any real number x ∈ R is the limit of a sequence of rational numbers.

B For x ∈ R to be computable, the convergence has to be effective.

Definition (Computable number): A real number x ∈ R is said to be computable if there exists a computable
sequence {rn}n∈N ⊂Q of rational numbers which converges effectively to x ,
i.e. if there exists a recursive function e : N→ N such that for all N ∈ N

|x− rn| ≤ 2−N whenever n ≥ e(N) .

⇒ x ∈ R is computable if a Turing machine can approximate it with exponentially vanishing error.

• Rc stand for the set of all computable real numbers.
• Cc = {x + iy : x ,y ∈ Rc} stands for the set of all computable complex numbers.
• Note that the set of computable numbers Rc (R is only countable.
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Computable Functions
Definition: A function f : T→ R on an interval T⊂ R is said to be computable if

(a) f is Banach–Mazur computable, i.e. if f maps computable sequences {tn}n∈N ⊂ Rc onto computable sequences
{f (tn)}n∈N ⊂ Rc .

(b) f is effective uniformly continuous, i.e. if there is a recursive function d : N→ N such that for every N ∈ N and all
t1, t2 ∈ T with |t1− t2| ≤ 1/d(N) always |f (t1)− f (t2)| ≤ 2−N is satisfied.

Lemma (equivalent definition of computability):
A function f : T→ R is computable if and only if there exists a computable sequence of rational polynomials {pm}m∈N
which converges effectively to f in the uniform norm, i.e. if there exists a recursive function e : N→ N such that for all
t ∈ T and every N ∈ N

m ≥ e(N) implies
∣∣f (t)−pm(t)

∣∣≤ 2−N .

Remark:
• There exist various notions of computability e.g. Borel- or Markov computability.
• Banach–Mazur computability is the weakest form of computability.
⇒ If a function is not Banach–Mazur computable then it is not computable with respect to any other notion of
computability.
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Computable Functions in Banach Spaces

B We consider 2π-periodic functions on R.

B We write T= R/2πZ for the additive quotient group of real numbers modulo 2π (think of T= [−π,π)).

B Let X be a Banach space of functions on T with norm ‖f‖X .

Definition: A function f ∈X is said to be X –computable if
(a) f is computable (i.e. effectively approximable by rational polynomials pm).

(b) its norm ‖f‖X is computable⇒ ‖f −pm‖X converges to zero effectively as m→ ∞.
The set of all X -computable functions is denoted by Xc.

For continuous functions C (T), computability implies C (T)-computability.

Lemma:
Let f : T→ R be a computable function. Then f is computable as a continuous function, i.e. f ∈ Cc(T).

J. Avigad and V. Brattka, “Computability and analysis: The legacy of Alan Turing,” in Turing’s legacy: developments from Turing’s ideas in
logic, ser. Lecture Notes in Logic, Bd. 42. New York: Cambridge University Press, 2014, pp. 1–47.

K. Weihrauch, Computable Analysis. Berlin: Springer-Verlag, 2000.
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Computability of the Output– Intuition
B The output i(t) = (Tu)(t) of T is usually not explicitly known.
B A function i(t) is computable if it can be approximated effectively

by a function pM(t) which can perfectly be calculated on a digital
computer.
− pM(t) might be a rational polynomial of appropriate degree M
− effective approximation⇒ one can control the approximation

error

Computability (an informal definition)
The output i(t) = (Tu)(t) is computable if there exists an algorithm with the following properties
B It can be implemented on a digital computer (a Turing machine).
B It has two inputs: 1. the input u(t) of T 2. an error bound ε > 0.
B It is able to determine in finitely many steps an approximation pM(t) of i(t) such that the true i(t) is guaranteed to

be close to pM(t), i.e. such that
i ∈ {f ∈X : ‖f −pM‖X < ε}

where X is an appropriate Banach space with a corresponding norm ‖·‖X .
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The Ideal Capacitor
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Ideal Capacitor – Negative Result
B We consider the system T given by the voltage-current relation on an ideal capacitor with capacitance C.

B Applying a time-variant voltage u(t) to a capacitor, the corresponding current i(t) is known to be given by

i(t) = (Tu)(t) = C
du
dt

(t) = C u′(t) , t ∈ R . (1)

B C ∈ Rc is a computable real number⇒ the „system T is commutable“.

B Input signals: u ∈ C 1(T), i.e. 2π-periodic continuously differentiable functions on T⇒ admissible.

Question: Let u ∈ C 1(T)∩Cc(T) be an arbitrary admissible input signal for the system T which is additionally
computable. Is it true that also the output i ∈ C (T) is a computable continuous function?

Theorem: There exists an u ∈ C 1(T) with the following properties

1. u ∈ Cc(T), i.e. u is a computable continuous function.

2. u′ ∈ C (T) is absolute continuous and u′ has an absolute converging Fourier series.

3. i(0) = C du
dt (0) = Cu′(0) /∈ Rc, i.e. the value of the output current at t = 0 is not computable.
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Ideal Capacitor – Remarks and Further Questions
B Proof: Explicit construction of u ∈ C 1(T) such that u′(0) is not computable.

B Similar result for the ideal inductor: u(t) = Li ′(t).

B Every non-trivial circuit contains capacitors or inductors.

Previous result holds for a subset S ⊂ C 1(T)∩Cc(T) of all admissible and computable inputs signals (namely for
those u for which u′ is additionally absolute continuous and possesses an absolute converging Fourier series).

Question: Can we find (large) subsets B ⊂ C 1(T)∩Cc(T) of all admissible and computable input signals such that
for every u ∈B the output i(t) = (Tu)(t) of the ideal capacitor is guarenteed to be computable?

We present two sharp characterizations of such subsets:

1. in terms of the second derivative u′′

2. in terms of the smoothness of u (in the Sobolev scale)
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Good Input Set – In Terms of Second Derivative
Theorem: Let u be the input signal for the ideal capacitor with the following properties

1. u ∈ C 1(T)∩Cc(T).
2. u′ is absolute continuous and u′′ ∈ L1

c(T).

Then the output current i(t) = (Tu)(t) = C u′(t) is a computable continuous function, i.e. i ∈ Cc(T).

Remark:

B If the second derivative of the input signal u belongs to L1
c(T), then the output i is computable.

B The statement is sharp with respect to the requirement u′′ ∈ L1
c(T).

If u′′ /∈ L1
c(T) then the output i might not be computable.
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Good Input Set – In Terms of Smoothness
B Let s ∈ Rc, s ≥ 0 be a computable number.

B For every f ∈ L2(T) with its Fourier series f (t) = a0/2+∑
∞
k=1 ak cos(kt)+bk sin(kt), we define the seminorm

‖f‖s,2 =
(

∑
∞
k=1 k2s

[
|ak |2 + |bk |2

])1/2
. (2)

B The set Hs(T) =
{

f ∈ C (T) : ‖f‖s,2 < ∞
}

equipped with the norm ‖f‖Hs(T) =max
(
‖f‖

∞
,‖f‖s,2

)
becomes a

Banach space.

B Parameter s characterizes the smoothness of the functions in Hs(T).

Theorem: Let T : u 7→ i be the LTI system given by the ideal capacitor with a computable capacitance C ∈ Rc, C > 0.
Then for every 0≤ s ≤ 3/2 there exists a computable input signal u ∈ Hs

c (T) such that the output signal i is not
computable.

Theorem: Let s ∈ Rc, s > 3/2 and assume u ∈ Hs
c (T), then u′ ∈ Cc(T) and so i = Cu′ ∈ Cc(T).
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Summary and Outlook
B There is generally no closed form expression for the output

u(t) = (Ti)(t) of an LTI system.
⇒ Numerically approximation methods (on digital
computers) are applied to determine u(t).

B Numerically approximation:
Given input i and ε > 0, determine (in finite time) a
confidence interval of width 2ε in which the (unknown)
unknown output u(t) lies.⇒ u(t) is computable.

B Main result: For the ideal capacitor, there exist admissible and computable inputs i(t) such that the
corresponding output u(t) = (Ti)(t) is not computable.

B Good input sets: We characterized sets B of admissible and computable inputs such that for every i ∈B the
corresponding output u(t) = (Ti)(t) is computable.

B Outlook: Investigation of other systems, characterization of good input sets.
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