

Reconstruction of FRI Signals using Deep Neural Network Approaches

Vincent C. H. Leung, Jun-Jie Huang and Pier Luigi Dragotti Department of Electrical and Electronic Engineering, Imperial College London, UK

45th International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2020)

Problem Statement

Imperial College London Finite Rate of Innovation (FRI)

- Classical sampling theory
 - Perfect reconstruction is possible when x(t) is bandlimited
 - Sampling frequency 1/T is twice the bandwidth of the input signal
 - Sampling kernel $\varphi(t)$ is a sinc function
- FRI sampling theory
 - Extended to classes of non-bandlimited signals with finite number of degrees of freedom per unit time [1]
 - Perfect reconstruction is possible given appropriate sampling kernel choices

[1] M. Vetterli, P. Marziliano, and T. Blu, "Sampling signals with finite rate of innovation," IEEE Transactions on Signal Processing, vol. 50, no. 6, pp. 1417–1428, Jun. 2002.

Example of FRI Signal

• Stream of *K* Diracs:

$$x(t) = \sum_{k=0}^{K-1} a_k \delta(t - t_k)$$

- 2K rate of innovation
- Many phenomena can be modelled as the convolution of a pulse shape with a stream of Diracs

Imperial College London Choices of Sampling Kernel $\varphi(t)$

- Satisfy generalised Strang-Fix conditions [2]
 - Able to reproduce exponential polynomials

$$\sum_{n \in \mathbb{Z}} c_{m,n,r} \varphi(t-n) = t^r e^{j\omega_m t} \text{ with } \omega_m = \omega_0 + m\lambda$$

- Polynomial reproducing function (m = 0, e.g. B-spline)
- Exponential reproducing function (r = 0, e.g. E-spline)

Classical FRI Methods

• Samples of a stream of Diracs $\{y[n]\}_{n=0}^{N-1}$ can be written as

$$y[n] = \left\langle x(t), \varphi\left(\frac{t}{T} - n\right) \right\rangle = \sum_{k=0}^{K-1} a_k \varphi\left(\frac{t_k}{T} - n\right) \text{ for } n = 0, 1, ..., N-1$$

• Mapping the samples to sum of exponentials

$$s[m] = \sum_{n=0}^{N-1} c_{m,n} y[n] = \sum_{k=0}^{K-1} a_k \sum_{n \in \mathbb{Z}} c_{m,n} \varphi\left(\frac{t_k}{T} - n\right)$$
$$= \sum_{k=0}^{K-1} \underbrace{a_k e^{j\omega_0 t_k/T}}_{b_k} \left(\underbrace{e^{j\lambda t_k/T}}_{u_k}\right)^m = \sum_{k=0}^{K-1} b_k u_k^m \quad \text{for } m = 0, 1, ..., P$$

→ Spectral Estimation (Non-linear w.r.t. locations)

Classical FRI Methods

- Spectral estimation can be solved by SVD-based subspace methods (e.g. Prony's method [3] and Matrix Pencil method [4])
- When $\{y[n]\}_{n=0}^{N-1}$ is corrupted by additive white Gaussian noise
 - The performance follows Cramér-Rao bound (CRB) at high PSNR
 - Breaks down when PSNR drops below a certain level

→ Develop methods that give more reliable estimations at low PSNR region while achieving near optimal performances at high PSNR region

[3] R. Prony, "Essai experimental et analytique," J. de l'Ecole Polytechnique, vol. 1, pp.24-76, 1795.
 [4] Y. Hua and T. K. Sarkar, "Matrix Pencil Method for Estimating Parameters of Exponentially Damped/Undamped Sinusoids in Noise," IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 38, no. 5, pp. 814-824, May 1990.

Breakdown PSNR

- Conjectured to be the necessary condition for confusion between noise and signal subspaces to occur (Subspace swap event) [4]
- For a stream of 2 Diracs of equal amplitude,

$$\operatorname{PSNR} < 10 \log_{10} \frac{8\left(\frac{P}{2} + 1\right) \ln\left(\frac{P}{2} + 1\right)}{\left(\frac{P}{2} + 1 - \frac{\sin\left(\frac{\lambda}{2}\left(\frac{P}{2} + 1\right)\Delta t_0/T\right)}{\sin\left(\frac{\lambda}{2}\Delta t_0/T\right)}\right)^2}$$

The smaller the distance between the two neighboring Diracs $(\frac{\Delta t_k}{T}$ with $\Delta t_k = t_{k+1} - t_k)$, the higher the breakdown SNR will be

[5] X. Wei and P. L. Dragotti, "Guaranteed performance in the FRI setting," IEEE Signal Processing Letters, vol. 22, no. 10, pp. 1661-1665, 2015.

DNN-based Approaches

Explore an alternative approach to solve FRI problem to alleviate the subspace swap problem

DNN-based methods have achieved state-of-the-art performances on many signal processing problem by learning from large amount of training data pairs

 Exploit the advantage of DNN and existing training data

Direct Inference: Motivation

- Inferring locations $\{\hat{t}_k\}_{k=0}^{K-1}$ from noisy samples $\{\tilde{y}[n]\}_{n=0}^{N-1}$ directly using DNN
- Bypass the classical subspace methods
 - May reduce the occurrence of inherent subspace swap event
- Does not require any explicit information about the sampling kernel $\varphi(t)$
 - Implicitly learn the relationship from training the network with large amount of data from the same sampling kernel

- Network Structure:
 - 3 Convolutional Layers, followed by 3 Fully Connected Layers of size 100, 100, K
 - Rectified Linear Unit (ReLU) as activation between each layer
 - Mean-squared error $\sum_{k=0}^{K-1} (\hat{t}_k t_k)^2$

Proposed Methods

Imperial College London Denoising Samples: Motivation

- Firstly denoise noisy samples $\{\tilde{y}[n]\}_{n=0}^{N-1}$ using DNN, then apply classical FRI methods to retrieve $\{\hat{t}_k\}_{k=0}^{K-1}$
- Lower the breakdown PSNR without significantly altering the performance in the low noise regime
 - Subspace swap event may remain as it is inherent to subspace-based reconstruction methods

Imperial College London Denoising Samples: Implementation

- Network Structure:
 - Similar to the direct inference approach
 - 3 Convolutional Layers with 100 filters, followed by 3 Fully Connected Layers with size 100N, 20N, N
 - Rectified Linear Unit (ReLU) as activation
 - Mean-squared error $\sum_{n=0}^{N-1} (\hat{y}[n] y[n])^2$

Proposed Methods

Simulation Setup

- Task: Reconstructing a stream of 2 Diracs with $t_k \in [-0.5, 0.5)$ and $a_k \in \mathbb{R}^+$
- Number of samples N = 21, Sampling period $T = \frac{1}{N} = \frac{1}{21}$
- DNN trained for each PSNR $\in [-5, 70]$ dB with a step of 5 dB
- 100,000 training data with $t_k \sim \mathcal{U}(-0.5,0.5)$ and $a_k \sim \mathcal{U}(0.5,10)$, where $\mathcal{U}(a,b)$ denotes uniform distribution between *a* and *b*.

Simulation Setup

- Optimal sampling kernel for subspace methods
 - An exponential reproducing kernel of maximum order and minimumsupport (e-MOMS) that can reproduce P + 1 = N exponentials evenly spaced around the unit circle

Simulation

Imperial College London

Evaluation Method

Metric: Standard Deviation

$$\sqrt{\frac{\sum_{i=0}^{I-1} \left(\hat{t}_{k}^{(i)} - t_{k}\right)^{2}}{I}}$$

- Fix the first Dirac at $t_0 = 0$ and change $t_1 \in [10^{-0.5}, 10^{-3}]$ evenly on a logarithmic scale with a step of $10^{-0.25}$
- Fixed amplitude $\{\hat{a}_k\}_{k=0}^1 = 2$ for breakdown PSNR comparison
- Monte Carlo simulations with I = 10,000 test data for each Δt_0 -PSNR pair

Simulation Results

- Both DNN approaches lowers breakdown PSNR
- Denoiser fails to push the breakdown PSNR boundary in high PSNR region

Imperial College London Simulation Results ($\Delta t_0 = 0.01$)

- When the Diracs are close together,
 - Direct inference method using DNN has pushed the breakdown PSNR lower
 - Both methods eventually breaks down when PSNR < 20 dB due to the high noise level

Simulation

Imperial College London Simulation Results ($\Delta t_0 = 0.1$)

- When the Diracs are sufficiently far apart,
 - The breakdown PSNR is higher for matrix pencil method
 - The centers of the scatters at high PSNR is not entirely aligned with the true locations

Simulation

Imperial College London Conclusion and Future Work

- We proposed two DNN-based approaches to retrieve the FRI signal:
 - 1. Direct inference of FRI parameters
 - 2. Denoising the samples
- DNN-based methods can reconstruct FRI signals at a low PSNR region where the existing FRI methods would break down, yet with a slight performance compromise in high PSNR region
- Future directions
 - Provide the network with explicit information about the sampling kernel
 - Design network architecture that incorporates the classical methods in an end-toend training

