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London Problem Statement
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Imperial College Introduction
London Finite Rate of Innovation (FRI)

« Classical sampling theory
— Perfect reconstruction is possible when x(t) is bandlimited
— Sampling frequency 1/T is twice the bandwidth of the input signal
— Sampling kernel ¢(t) is a sinc function

* FRI sampling theory

— Extended to classes of non-bandlimited signals with finite number of
degrees of freedom per unit time [1]

— Perfect reconstruction is possible given appropriate sampling kernel
choices

[1] M. Vetterli, P. Marziliano, and T. Blu, “Sampling signals with finite rate of innovation,” IEEE Transactions on Signal Processing, vol. 50, no. 6, pp. 1417—
1428, Jun. 2002. 3
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London Example of FRI Signal

 Stream of K Diracs:

K-1

o(t) =) @ps(t —ty)

k=0
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— 2K rate of innovation

— Many phenomena can be modelled as the convolution of a pulse
shape with a stream of Diracs
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London Choices of Sampling Kernel ¢(t)

- Satisfy generalised Strang-Fix conditions [2]
— Able to reproduce exponential polynomials

Z Crpnrp(t — 1) = t"edmt with w, = wy + mA
nez

— Polynomial reproducing function (m = 0, e.g. B-spline)
— Exponential reproducing function (r = 0, e.g. E-spline)

[2] G. Strang and G. Fix, “A Fourier analysis of the finite element variational method,” in Constructive Aspects of Functional Analysis. Springer Berlin
Heidelberg, 2011, pp. 793-840.
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London Classical FRI Methods

- Samples of a stream of Diracs {y[n]}YZ} can be written as

yln] = <£1:(t),<p (%—n)> I;z;aw (%’“ —n) forn—=01,. . N—1

« Mapping the samples to sum of exponentials

sm] = j:z_::cmny[n] _ Igak%%n@ (t— _ n)

K-1 K-1
= ape? otk T | gaA/T = E byup' form=0,1,...,P
k=0 by U, k=0

- Spectral Estimation (Non-linear w.r.t. locations)
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Classical FRI Methods

« Spectral estimation can be solved by SVD-based subspace methods (e.g.
Prony’s method [3] and Matrix Pencil method [4])

- When {y[n]}NZ] is corrupted by additive white Gaussian noise
— The performance follows Cramér-Rao -

bound (CRB) at high PSNR

— Breaks down when PSNR drops
below a certain level

Standard Deviation
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- Develop methods that give more reliable estimations at low PSNR region
while achieving near optimal performances at high PSNR region

[4] Y. Hua and T. K. Sarkar, “Matrix Pencil Method for Estimating Parameters of Exponentially Damped/Undamped Sinusoids in Noise,” IEEE Transactions on

ﬂ [3] R. Prony, “Essai experimental et analytique,” J. de I'Ecole Polytechnique, vol. 1, pp.24-76, 1795.

Acoustics, Speech, and Signal Processing, vol. 38, no. 5, pp. 814-824, May 1990.
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London Breakdown PSNR

« Conjectured to be the necessary condition for confusion between noise and
signal subspaces to occur (Subspace swap event) [4]

* For a stream of 2 Diracs of equal amplitude,
Breakdown PSNR

60
8(L 4+ 1)In(L+1
PSNR < 1010g,, —z T m(F+D
— 40 - P 1 sin( 2 (54+1)Ato/T)
3 2 sin(%AtU/T)
2
Z 20+ |
o0}
A

The smaller the distance between the two
0 . neighboring Diracs (% with Aty = tg4q1 — tg), the

. . . . higher the breakdown SNR will be
0 2 4 6 8 10
Aty /T

q [5] X. Wei and P. L. Dragotti, “Guaranteed performance in the FRI setting,” IEEE Signal Processing Letters, vol. 22, no. 10, pp. 1661-1665, 2015. FS




Imperial College Proposed Methods

London DNN-based Approaches
* Explore an alternative approach to solve FRI problem to alleviate the
subspace swap problem 6 | Breakdown PSNR

0 2 4 6 8 10
Aty/T

DNN-based methods have achieved state-of-the-art performances on many
signal processing problem by learning from large amount of training data pairs

- Exploit the advantage of DNN and existing training data



Imperial College Proposed Methods
London Direct Inference: Motivation

- Inferring locations {£,}¥-} from noisy samples {§[n]}YZ3 directly using DNN

* Bypass the classical subspace methods
— May reduce the occurrence of inherent subspace swap event

« Does not require any explicit information about the sampling kernel ¢(t)

— Implicitly learn the relationship from training the network with large
amount of data from the same sampling kernel




Imperial College Proposed Methods
London Direct Inference: Implementation

* Network Structure:

— 3 Convolutional Layers, followed by 3 Fully Connected Layers of size
100,100,K

— Rectified Linear Unit (ReLU) as activation between each layer

N x 100 N x 100 Nx 100

— Mean-squared error Y a=o (& — ti)? ~|~|
Iy
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Imperial College Proposed Methods
London Denoising Samples: Motivation

- Firstly denoise noisy samples {#[n]}¥=¢ using DNN, then apply classical FRI
methods to retrieve {£, }<=5

* Lower the breakdown PSNR without significantly altering the performance in
the low noise regime

— Subspace swap event may remain as it is inherent to subspace-based
reconstruction methods




Imperial College Proposed Methods
London Denoising Samples: Implementation

* Network Structure:
— Similar to the direct inference approach

— 3 Convolutional Layers with 100 filters, followed by 3 Fully Connected
Layers with size 100N, 20N, N

— Rectified Linear Unit (ReLU) as activation

— Mean-squared error YNZ32(9[n] — y[n])?
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London Simulation Setup

Task: Reconstructing a stream of 2 Diracs with t;, € [—0.5,0.5) and a; € R*

Number of samples N = 21, Sampling period T = % = 2—11

DNN trained for each PSNR € [-5,70] dB with a step of 5 dB

100,000 training data with t;, ~U(—0.5,0.5) and a; ~ U(0.5,10), where U(a, b)
denotes uniform distribution between a and b.
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London Simulation Setup

« Optimal sampling kernel for subspace methods

— An exponential reproducing kernel of maximum order and minimum-
support (e-MOMS) that can reproduce P + 1 = N exponentials evenly
spaced around the unit circle
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Imperial College Simulation
London Evaluation Method

Metric: Standard Deviation -1 () 2
2 i=0 (tk: _tk‘)

1

- Fix the first Dirac at t, = 0 and change ¢, € [107°5,1073] evenly on a
logarithmic scale with a step of 107%-2°

- Fixed amplitude {a;};—, = 2 for breakdown PSNR comparison

* Monte Carlo simulations with I = 10,000 test data for each Aty,-PSNR pair
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London Simulation Results

Both DNN approaches lowers breakdown PSNR
Denoiser fails to push the breakdown PSNR boundary in high PSNR region
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London Simulation Results (Aty = 0.01)

- When the Diracs are close together,

— Direct inference method using DNN has pushed the breakdown PSNR
lower

— Both methods eventually breaks down when PSNR < 20 dB due to the
high noise level
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« When the Diracs are sufficiently far apart,

Simulation Results (Aty = 0.1)

— The breakdown PSNR is higher for matrix pencil method
— The centers of the scatters at high PSNR is not entirely aligned with the
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London Conclusion and Future Work

*  We proposed two DNN-based approaches to retrieve the FRI signal:
1. Direct inference of FRI parameters
2. Denoising the samples

*  DNN-based methods can reconstruct FRI signals at a low PSNR region
where the existing FRI methods would break down, yet with a slight
performance compromise in high PSNR region

» Future directions
— Provide the network with explicit information about the sampling kernel

— Design network architecture that incorporates the classical methods in an end-to-
end training

———————————————————————yy
20



Imperial College
London

ThankYou




