

Trapezoidal Segment Sequencing: A Novel Approach for Fusion of Human-Produced Continuous Annotations

Brandon M. Booth, Shri Narayanan

May 4, 2020

Signal Analysis and Interpretation Lab University of Southern California

- 1. Introduction
 - Background: Continuous Annotation
 - Signal Warping (Our Previous Work)
- 2. Proposed Method
- 3. Validation
- 4. Discussion and Future Work

Introduction

Introduction

- Interested in human behavior and experiences and training machines to perceive and predict them
- At present, we are dependent on supervised learning using labels of experience provided by humans

Introduction

Many types of human-produced annotations

- Discrete or continuous-scale (emotion categories, dimensional affect)
- Discrete or continuous-time (images, videos)
- ▶ We **focus** on continuous-scale and continuous-time
 - ▶ e.g., dimensional affect from video

OASIS (Dimensional Valence + Arousal)

IEMOCAP (Dimensional Valence + Arousal Emotion Tags)

Distance Learners (Engagement)

- ► Typical procedure:
 - 1. Collect multiple annotations from different people
 - 2. Fuse the annotations to produce a single time series
- ► Why?
 - Mitigate individual biases and annotation artifacts

▶ Many options for fusion, but no consensus on best approach

- Simple averaging
- ▶ Time-align, then average (*EvalDep*, *DTW*)
- Annotator modeling + latent state recovery (HMM)
- Correlated spaces regression
- Canonical correlation analysis
- ▶ RankTrace-based preference fusion
- More...

▶ Each method makes its own assumptions

Two-step fusion: Signal warping (previous work)

Assumes particular structure to annotator reliability

Background: Signal Warping Method Intuition

 Signal warping idea (previous work) based on observation that annotators capture trends more reliably than they assign values

Target signal (bold magenta) and individual annotations (thin lines)

 Key idea: Partition the signal into reliable (trend) and less reliable (constant) regions

Background: Trapezoidal Segmented Regression

Achieved using trapezoidal signals (previous work¹)

Piecewise cont. function of alternating sloped and constant lines

Simple trapezoidal signal (left) and a trapezoidal segmented regression (right)

We show these signals are sensible annotation approximators
Theorem 1: Proof that trapezoidal signals are dense in C_C(R)

¹Brandon M Booth and Shrikanth S Narayanan. "Trapezoidal Segmented Regression: A Novel Continuous-scale Real-time Annotation Approximation Algorithm". In: 2019 8th International Conference on Affective Computing and Intelligent Interaction (ACII). IEEE. 2019, pp. 600–606.

Background: Signal Warping Pipeline

Signal warping algorithm²

Two-step fusion:

- 1. Fuse annotations and partition into trend and constant intervals
- 2. Gather contrastive annotations for unreliable (constant) segments and use results to warp fused annotation

²Brandon M Booth, Karel Mundnich, and Shrikanth S Narayanan. "A novel method for human bias correction of continuous-time annotations". In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2018, pp. 3091–3095.

Prior approach: Fuse annotations \rightarrow TSR approximation

 Problem: Fusion using some existing method, inconsistent with our observations and assumptions

Motivation for proposed method: End-to-end implementation assuming trapezoidal-like annotation structure

Proposed Method

Proposed method: Trapezoidal segment sequencing

- 1. Compute TSR approximation for each annotation A_i^a :
 - ▶ Compute the forward difference sequence: D_i^a : $1 \le i \le N-1$
 - ► Normalize the differences:

$$TSS_{i}^{a} = \begin{cases} -1 & D_{i}^{a} < 0 \\ 0 & D_{i}^{a} = 0 \\ 1 & D_{i}^{a} > 0 \end{cases}$$

- 2. Fuse by majority voting
 - $\blacktriangleright TSS_i = mode(TSS_i^a)$

▶ (*) Extracting less reliable (constant) regions from *TSS_i* is easy

Method: Example Signal

Example annotation signal sampled at 1Hz:

Sample annotation signal (dotted), TSR approximation (solid), and TSS render using green and red vertical bands. Red bands correspond to no change in the TSR, green bands correspond to a trend.

Validation

Experiment where the true signal is known a priori

▶ Task: Annotate the intensity of the shade of green

Video stimulus

Annotation UI

Validation: Annotation Results

- Protocol
 - Ten annotators
 - Continuous-time and continuous-scale
- Results
 - ▶ High agreement: ICC(3,k) = 0.97

Task A: Objective truth and annotations

Task B: Objective truth and annotations

Vertical bands = TSS after majority voting

- Red bands: no change (constant)
- Green bands: some change (up/down trend)

Validation TSS + Signal Warping Results

Task	Method	Pearson	Spearman	Kendall'	s NMI
				Tau	
Α	EvalDep (baseline)	0.90	0.93	0.80	0.88
	TSS+SW(proposed)	0.96	0.92	0.80	0.88
	Fusion-first SW	0.97	0.94	0.83	0.82
В	EvalDep (baseline)	0.96	0.96	0.83	1.0
	TSS+SW(proposed)	0.96	0.96	0.83	1.0
	Fusion-first SW	0.99	0.99	0.91	0.99

Discussion and Future Work

- ► Introduced TSS fusion leveraging TSR
 - ▶ Exploits structure in variation of annotator reliability over time

Signal warping with TSS enables end-to-end annotation fusion that is internally consistent in its assumptions

- ▶ End-to-end signal warping on real-world data (external consistency)
- TSS representation provides foundation for new annotator agreement measures
 - Supports both global and localized agreement over interpretable partitions in annotation space (e.g., trend vs. no change)

Code available on GitHub:

https://github.com/brandon-m-booth/2019_continuous_annotations

▶ Optimum TSR

► Signal warping fusion with TSS

Brandon M Booth brandon.m.booth@gmail.com

Thanks to our sponsor!

This presentation is a modified version of the following template:

github.com/matze/mtheme

The theme *itself* is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

