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Introduction

Motivation

Continuous growth of data

Multidimensional observations known as tensors

Hyperspectral images
Time series of images

Color video

Challenges:

Quantized measurements for compression purposes

Lost measurements due to communication failures

Corrupted measurements due to noise

Anomalies in the data
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Introduction

Problem

Recovery of all the real-valued entries of a high-dimensional signal from a
number of quantized and sparsely corrupted measurements.

Proposed solution:
A novel quantized tensor robust principal component analysis algorithm is
used to recover the tensor as a sum of a low-rank and a sparse tensor,
through matricizations in each mode.
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Related Work

Related Work

Tensor Robust Principal Component Analysis using

tensor singular value decomposition

tensor decomposition

tensor unfoldings

Tensor completion from binary measurements using

nuclear norm constraint on the different matricizations

tensor nuclear norm

tensor decomposition
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From Tensor to Matrices

From Tensor to Matrices

M ∈ RI1×···×IN is a N-way array, the unknown tensor, such that

M = Z + S,

where Z is a low-rank tensor and S a sparse tensor of the same
dimensions.

The mode-n unfolded matrix
M(n) ∈ RIn×

∏
i 6=n Ii corresponds to

a matrix with columns being
the vectors obtained by fixing

all indices of M except the
n-th index.
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From Tensor to Matrices

Robust Principal Component Analysis

If PΩ is a random sampling operator with sampling set Ω, then the
optimization problem on real-valued matrices is:

minimize ‖Z(n)‖∗ + λ‖S(n)‖1

subject to PΩ(Z(n) + S(n)) = PΩ(M(n))

M(n) = Z(n) + S(n)
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Quantization Model

Quantization Model

The quantized measurement of the (i1, ..., iN)− th entry of M is

Yi1..iN = Q(Zi1..iN + Si1..iN + εi1..iN ), (i1, .., iN) ∈ Ω

εi1...iN ∼ Logistic(0, 1) or εi1...iN ∼N(0, 1)

where Q : R→ {1, ..,K} is a uniform scalar quantizer that

Q(x) = l if wl−1 < x ≤ wl , l ∈ {1, ...,K},

where {w0,w1, · · · ,wK} represents the set of quantization bin boundaries
of all measurements (we assume that is known a priori).
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Proposed Method

Quantized Robust Principal Component Analysis

We solve the following constrained optimization problem:

min Z(n),S(n)
−

∑
(j ,k)∈Ωn

log p(Y(n)j ,k
| Z(n)j ,k

+ S(n)j ,k
)

subject to ‖Z(n)‖∗ ≤ λ and ‖S(n)‖1 ≤ σ

If the tensors U,L ∈ RI1×···×IN contain the upper and lower bin
boundaries corresponding to the measurements, then
p(Y(n)j,k |Z(n)j,k +S(n)j,k ) = Φ(U(n)j,k −Z(n)j,k −S(n)j,k )−Φ(L(n)j,k −Z(n)j,k −S(n)j,k ).

The function Φ(x) corresponds to an inverse link function.

Logistic model: Φlog(x) = 1
1+e−x ,

Probit model: Φpro(x) =

∫ x

−∞
N(s | 0, 1) ds.
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Proposed Method

Algorithm (1/2)

Starting with a random low-rank component Z(n) and a zero sparse
component S(n), the algorithm optimize iteratively each individual variable
while holding the other fixed. At each iteration q:

1. Optimize Z(n) iteratively by holding S(n) fixed. At each iteration l :

i) Gradient step to optimize the low-rank component Z(n):

Ẑl+1
(n) ← Zl

(n) − c · ∇F ,

[∇F ]jk =

 Φ
′
(L(n) jk

−Xjk )−Φ
′
(U(n) jk

−Xjk )

Φ(U(n) jk
−Xjk )−Φ(L(n) jk

−Xjk ) if (j , k) ∈ Ωn

0 otherwise
,

where X = Zl
(n) + Sq

(n) and c = 1
L is the step-size (Llog = 1

4 , Lpro = 1).
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Proposed Method

Algorithm (2/2)

ii) Projection step to impose low-rankness on Ẑl+1
(n) , using the projection

Bλ onto the l1-ball with radius λ:

(ŨS̃Ṽ
T

) ← svd(Ẑl+1
(n) )

s̃ ← Bλ(diag(S̃))

Zl+1
(n) ← Ũ · diag(s̃) · Ṽ T

2. Optimize S(n) by holding Z(n) fixed:
i) Gradient step to optimize the sparse component S(n):

Ŝq+1
(n) ← Sq

(n) − c · ∇F

ii) Projection step to impose sparsity on Ŝq+1
(n) , using the soft-thresholding

operator Hσ(x) = sign(x) ·max(|x | − σ, 0):

Sq+1
(n) ← Hσ(Ŝq+1

(n) ).
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Proposed Method

Dynamic Weights

If the estimated tensor in each unfolding is Mn = foldn(Z(n) + S(n)), the
recovered tensor is calculated as

M ≈
N∑

n=1

an ·Mn,

where

an =
[fitn(Z(n) + S(n))]−1∑N
i=1[fiti (Z(i) + S(i))]−1

, n = 1, ...,N

and the fitting error is given by

fitn(Z(n) + S(n)) = ‖PΩ(Q(foldn(Z(n) + S(n))))−Y)‖F .

The dynamic weights an can improve the recovery quality of the recovered
tensor.
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Experimental Results

Experiments

Data: Time-series of images of the land surface temperature,
acquired by the MODIS satellite over the region of Brazil.

Size: 64× 64× 22
The last dimension indicates 22 days of July and August of 2019.

We selected this region and time period because of the extensive fires
that affected a large portion of the Amazonian rain-forest.

Original images use 8 bits per pixel per band.

The recovery performance is measured in terms of the
Peak-Signal-to-Noise-Ratio (PSNR) between the original and the
estimated images of the time-series.
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Experimental Results

Sparsity Parameter σ
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Figure: Recovery error for different sparsity values and sampling percentages,
using 4 bits of quantization.
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Experimental Results

Number of Quantization Bits
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Figure: Recovery error for different sampling percentages and bits of quantization.
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Experimental Results

Tensor Unfoldings

Table: Recovery error for different sampling percentages on each mode
matricization and on the weighted sum of them, using 3 bits of quantization.

PSNR
Sampling Percentage

10 30 50 70 100
Mode-1 24.43 26.62 28.43 33.15 35.32
Mode-2 23.38 25.96 31.33 33.17 35.35
Mode-3 25.92 28.52 30.46 32.35 34.89

Weighted sum 25.21 28.28 31.13 33.25 35.54
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Experimental Results

Anomaly Detection

True Positive Rate =
#True predicted positions of the anomalies

#True positions of the anomalies
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Figure: True Positive Rate for different sampling percentages and bits of
quantization measured only in the sparse component and the available
observations.
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Experimental Results

Recovered Images

104

106

108

110

112

114

116

118

120

122

124

126

(a) Original image

104

106

108

110

112

114

116

118

120

122

124

126

(b) Quantized image
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(c) Low-rank component
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(d) Sparse component
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Conclusion

Conclusion

A formal approach is presented for the recovery of a tensor from a
number of quantized and sparsely corrupted measurements.

Investigation of the interaction between quantization and sampling in
high-order structured data.

Detection of sparse outliers in the data (e.g., temperature anomalies).

Evaluation on time-series of satellite derived images of land surface
temperature.
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