

High-Resolution Attention Network with Acoustic Segment Model for Acoustic Scene Classification

Xue Bai¹, Jun Du¹, Jia Pan¹, Heng-shun Zhou¹, Yan-Hui Tu¹; Chin-Hui Lee²

¹University of Science and Technology of China, Hefei, China ²Georgia Institute of Technology, Atlanta, Georgia, USA

ICASSP 2020

I Background & Motivation

- 2 The proposed HRAN-ASM
- 3 Results and Analysis
- 4 Conclusion and Future Work
- 5 Q&A session

I Background & Motivation

- 2 The proposed HRAN-ASM
- 3 Results and Analysis
- 4 Conclusion and Future Work
- 5 Q&A session

> The goal of Acoustic Scene Classification (ASC) task is to classify the audio to specific scenes, like park, airport, etc.

> For ASC, there are several difficulties in developing high-performance systems.

- Existence of overlapping sound events
- Lack of distinguishing audio segments
- Commonalities between different scene categories.

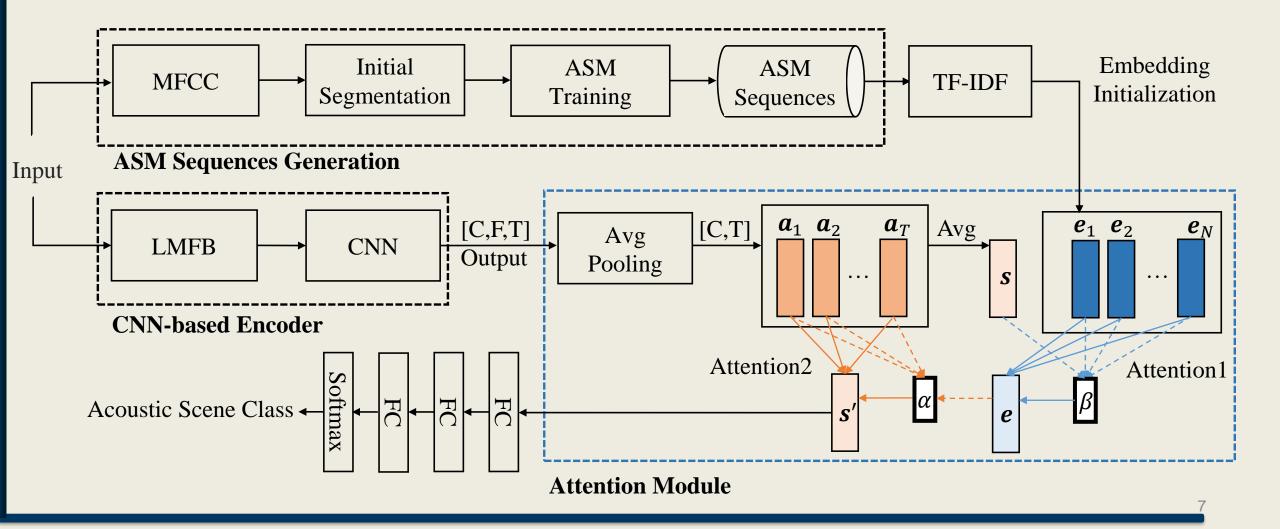
In this paper, we propose a novel strategy for acoustic scene classification, namely high-resolution attention network with acoustic segment model (HRAN-ASM) to improve the classification performance.

- Use fully CNN to obtain high-level semantic information.
- The acoustic segment model (ASM) proposed in our recent work provides embedding vectors for our attention mechanism.
- Adopt two-stage attention strategy to select the relevant acoustic scene segments.

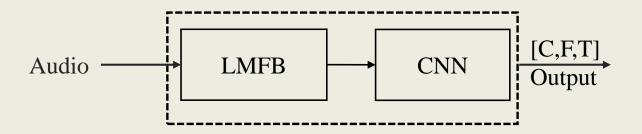
1 Background & Motivation
2 The proposed HRAN-ASM

- · 2 me proposed man-Asi
- 3 Results and Analysis
- 4 Conclusion and Future Work
- 5 Q&A session

> Overall framework



CNN-based Encoder



- Log mel-filterbank (LMFB) is our input feature with the size of $c \times f \times t$.
- VGGNet-16 is converted into a fully convolutional network (FCN) by simply removing its fully connected layers and used as our CNN-based encoder.
- The output is a 3-dimensional array of size $C \times F \times T$.

ASM Sequences Generation

- Use acoustic scene model to generate ASM sequences for each audio.
- Together the ASM sequences belonging to the same category.
- Term frequency (TF) and inverse document frequency (IDF) (TF-IDF) are used to obtain the ASM unit counts in each scene.

ASM Sequences Generation

 The TF of ASM unit m in the nth scene is given by (1), where c_{m,n} is the count of m in the nth scene.

$$TF_{m,n} = \frac{c_{m,n}}{\sum_{k=1}^{K} c_{k,n}}$$
(1)

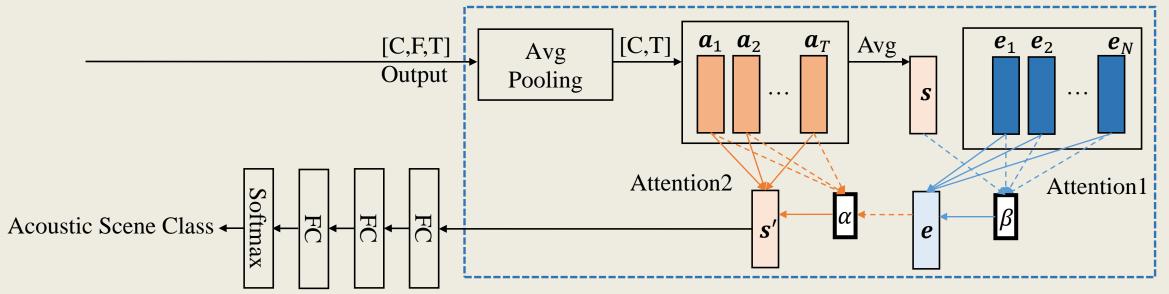
 The IDF is given by (2), where L is the number of all scene types and L(m) is the total number of times that ASM unit m appears in all scenes.

$$IDF_m = \log \frac{L+1}{L(m)+1} \tag{2}$$

• Each element in the embedding e_n is given by

$$e_{m,n} = TF_{m,n} \times IDF_m \tag{3}$$

Attention Module



• Get a vector representation *s* of the scene.

$$A = \{a_1, a_2, ..., a_T\}$$
(5)

$$\boldsymbol{s} = \frac{1}{T} \sum_{t=1}^{T} \boldsymbol{a}_t \tag{6}$$

Attention Module

• The first attention of HRAN-ASM approach

To explore the intrinsic connection between the current utterance and different scenes

$$\beta_{i} = \frac{\exp(\boldsymbol{e}_{i}^{\top} \cdot \boldsymbol{s})}{\sum_{n=1}^{N} \exp(\boldsymbol{e}_{n}^{\top} \cdot \boldsymbol{s})}, i \in (1, N)$$

$$\boldsymbol{e} = \sum_{n=1}^{N} \beta_{i} \boldsymbol{e}_{i}$$

$$(8)$$

• The second attention of HRAN-ASM approach

To focus on effective time regions of the current utterance

$$\alpha_j = \frac{\exp(\boldsymbol{e}^\top \cdot \boldsymbol{a}_j)}{\sum_{t=1}^T \exp(\boldsymbol{e}^\top \cdot \boldsymbol{a}_t)}, j \in (1, T)$$
(9)

$$s' = \sum_{j=1}^{T} \alpha_j a_j \tag{10}$$

• 1 Background & Motivation

- 2 The proposed HRAN-ASM
- 3 Results and Analysis
- 4 Conclusion and Future Work
- 5 Q&A session

Results and Analysis

- Experimental setup
 - Data set: DCASE2018 Task1a
 - CNN-based encoder: VGGNet-16 without fully connected layer
 - ASM sequences: 20 ASM units, 405-dimensional embedding vectors
 - Model Training:
 - Stochastic gradient descent (SGD)
 - Learning rate is 0.005
 - The number of iterations is 60

The performance of different approaches on test set.

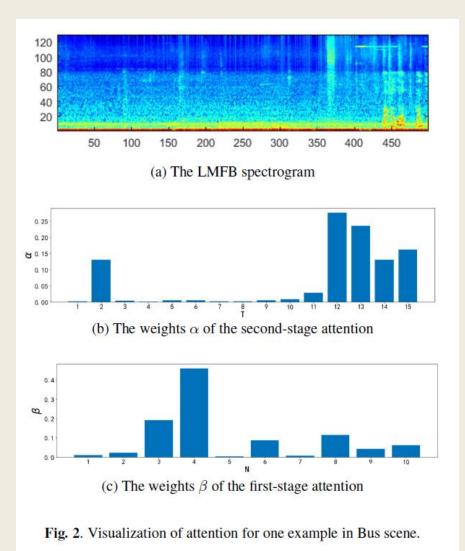
System	VGGNet-16[24]	ASM[12]	Self-Attention
Accuracy	67.4%	66.1%	68.9%

The performance comparison of our HRAN approach with different initialization methods for the embedding vectors on test set.

System	Self-Attention	HRAN-Orth	HRAN-ASM
Accuracy	68.9%	68.3%	70.5%

Results and Analysis

- Fig. 2 (a) shows the LMFB spectrogram of a Bus scene.
- From Fig. 2 (b), the LMFB features at different time points are assigned with different weights and HRAN-ASM approach find critical segments.
- Our approach can generate different weights (in Fig. 2 (c)) to the set of embedding vectors initialized by ASM while only a global embedding vector is adopted in the self-attention case.



• 1 Background & Motivation

- 2 The proposed HRAN-ASM
- 3 Results and Analysis
- 4 Conclusion and Future Work
- 5 Q&A session

Conclusion

- The acoustic segment model is used to generate representative embedding for each scene as a guided information.
- A two-stage attention mechanism is utilized to get salient frames of each scene and improve recognition.
- Our approach can achieve highly competitive performance under single system and no data expansion.

Future Work

• More fusion methods will be tried to improve the recognition rate of ASC.

• 1 Background & Motivation

• 2 The proposed HRAN-ASM

• 3 Experiments and Results

• 4 Conclusion and Future Work

• 5 Q&A session

Thanks for listening!

If you have any questions about this paper, Please contact me and I will answer it.