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 The goal of Acoustic Scene Classification (ASC) task is to classify the 

audio to specific scenes, like park, airport, etc. 

 For ASC, there are several difficulties in developing high-performance 

systems.

• Existence of overlapping sound events

• Lack of distinguishing audio segments

• Commonalities between different scene categories.
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 In this paper, we propose a novel strategy for acoustic scene classification, 

namely high-resolution attention network with acoustic segment model 

(HRAN-ASM) to improve the classification performance.

• Use fully CNN to obtain high-level semantic information.

• The acoustic segment model (ASM) proposed in our recent work provides embedding 

vectors for our attention mechanism.

• Adopt  two-stage attention strategy to select the relevant acoustic scene segments.
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 Overall framework
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 CNN-based Encoder

• Log mel-filterbank (LMFB) is our input feature with the size of 𝑐 × 𝑓 × 𝑡.

• VGGNet-16 is converted into a fully convolutional network (FCN) by simply removing 

its fully connected layers and used as our CNN-based encoder.

• The output is a 3-dimensional array of size 𝐶 × 𝐹 × 𝑇.
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 ASM Sequences Generation

• Use acoustic scene model to generate ASM sequences for each audio.

• Together the ASM sequences belonging to the same category.

• Term frequency (TF) and inverse document frequency (IDF) (TF-IDF) are used to obtain 

the ASM unit counts in each scene.
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 ASM Sequences Generation

• The TF of ASM unit 𝑚 in the 𝑛𝑡ℎ scene is given by (1), where 𝑐𝑚,𝑛 is the count of 𝑚 in 

the 𝑛th scene.

• The IDF is given by (2), where 𝐿 is the number of all scene types and 𝐿 𝑚 is the total number of times

that ASM unit 𝑚 appears in all scenes.

• Each element in the embedding 𝑒𝑛 is given by
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 Attention Module

• Get a vector representation 𝒔 of the scene.
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 Attention Module

• The first attention of HRAN-ASM approach

To explore the intrinsic connection between the current utterance and different scenes

• The second attention of HRAN-ASM approach

To focus on effective time regions of the current utterance
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 Experimental setup

• Data set: DCASE2018 Task1a

• CNN-based encoder: VGGNet-16 without fully connected layer

• ASM sequences: 20 ASM units, 405-dimensional embedding vectors

• Model Training:

• Stochastic gradient descent (SGD)

• Learning rate is 0.005

• The number of iterations is 60
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 The performance of different approaches on test set.

The performance comparison of our HRAN approach with different initialization 

methods for the embedding vectors on test set.
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• Fig. 2 (a) shows the LMFB spectrogram of a Bus 

scene.

• From Fig. 2 (b), the LMFB features at different 

time points are assigned with different weights 

and HRAN-ASM approach find critical segments.

• Our approach can generate different weights ( in 

Fig. 2 (c)) to the set of embedding vectors 

initialized by ASM while only a global embedding 

vector is adopted in the self-attention case. 
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 Conclusion

• The acoustic segment model is used to generate representative embedding for each scene 

as a guided information.

• A two-stage attention mechanism is utilized to get salient frames of each scene and improve 

recognition.

• Our approach can achieve highly competitive performance under single system and no 

data expansion.

 Future Work

• More fusion methods will be tried to improve the recognition rate of ASC.
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Thanks for listening!

If you have any questions about this paper, 
Please contact me and I will answer it.


