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Introduction

Let us consider an SDE

dXt = a(Xt, t) dt+ b(Xt, t) dWt, (1)

to solution Xk , Xtk , where Wk ,Wtk is a Wiener process with spectral
density q, and suppose that there is a weakly unique solution.

Now we encounter a problem that how do we select those SDE coefficients
(i.e., the drift function a and dispersion b)?

More practically, how to learn from observations/data,
X1:N = {X1, X2, . . . , XN}?
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Parametric Approaches

One way to proceed is the parametric approach, assuming that, for example,
a := aθ.

See e.g., early studies by Kessler (1997), Dacunha-Castelle &
Florens-Zmirou (1986), Lamouroux & Lehnertz (2009).

MLE, MAP (Papaspiliopoulos et al. 2012, Friedrich et al. 2011), and
sampling-based (e.g., MCMC) (Papaspiliopoulos et al. 2012) methods are
often used to estimate the parameters.

However, parametrization is not flexible, and the sampling-based inferencer
are computationally expensive.
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GP Approach

An alternative approach is to postulate the Gaussian process (GP) prior on
the unknown SDE coefficients (Papaspiliopoulos et al. 2012, Ruttor et al.
2013, Rasmussen & Williams 2006).

Let us focus on the drift function a and assume that b is constant. We
model a as a GP,

a ∼ GP(0,K(X,X ′)), (2)

where K is a covariance function. We target at the posterior

p(a | X1:N ). (3)
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GP Approach

Next, to build the measurement model, we first need to discretize the SDE.
A typical example is the Euler–Maruyama scheme, given by

Xk+1 = Xk + a(Xk) ∆t+ b∆Wk, (4)

where ∆t is the time interval and ∆Wk = Wk+1 −Wk ∼ N (0, q∆t). For
notation convenience, we rewrite the above (4) as

Yk = a(Xk) ∆t+ b∆Wk, (5)

where Yk = Xk+1 −Xk.
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GP Approach

Now the GP regression model for drift function a estimation is

a ∼ GP(0,K(X,X ′)),
Yk = a(Xk) ∆t+ εk,

(6)

where εk ∼ N (0, q∆t). This is a vanilla GP regression problem, of which
the posterior admits a closed-form (still Gaussian) (Rasmussen & Williams
2006).

This GP method has already been discussed by, for example,
Papaspiliopoulos et al. (2012), Ruttor et al. (2013), García et al. (2017),
Batz et al. (2018).
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Problems

The regression on the above model (6) has many problem:

I The computation of batch GP regression scales cubically O(N3).
I The measurement model by Euler–Maruyama only works well when ∆t

is small enough, as its strong order of convergence is merely
O(∆t0.5) (Kloeden & Platen 1992).

We propose to solve by

I Perform GP regression using Bayesian smoothing, scales linearly O(N).
I Well then, use higher order convergence model, for example, Itô–Taylor

strong order 1.5 (Itô-1.5).
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Itô–Taylor Expansion

Let us replace the measurement model Yk = a(Xk) ∆t+ εk in (6) with a
more accurate formulation

Yk = g(Xk) + εk(Xk), (7)

where function g random variable εk are obtained by approximating the
solution

Xk+1 = Xk +
∫ tk+1

tk

a(Xs) ds+
∫ tk+1

tk

bdWs, (8)

with higher order Itô–Taylor expansion (Kloeden & Platen 1992). The
Euler–Maruyama is the case when the above integrals are simply estimated
with rectangle (i.e., g(Xk) = a(Xk) ∆t and εk(Xk) = b∆Wk).
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Itô–Taylor Expansion

Here we use a particular useful expansion: Itô-1.5, such that

g(Xk) = a(Xk) ∆t+ 1
2

(
da(Xk)

dXk
a(Xk) + b2 q

2
d2a(Xk)

dX2
k

)
∆t2,

εk(Xk) = b∆ωk + da(Xk)
dXk

b∆γk,
(9)

where [
∆γk
∆ωk

]
∼ N

([
0
0

]
,

[
q∆t3/3 q∆t2/2
q∆t2/2 q∆t

])
. (10)

Not limited to more higher weak order expansions (see, e.g., Kloeden &
Platen 1992, Zhao et al. 2020).
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Itô–Taylor GP Regression Model

Now the GP regression model is

a ∼ GP(0,K(X,X ′)),
Yk = g(Xk) + εk(Xk).

(11)

Unfortunately, the measurement model is non-linear, and contains the
derivatives of GP: a′, a′′. This makes the GP regression even more
complicated and expensive.

Our strategy is to transform the GP a into a state-space representation
α =

[
a a′ a′′ · · ·

]T, and thus the regression is done by non-linear
Kalman filters and smoothers.
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State-space Representation of GP

Knowing that a linear SDE characterize a GP, thus we transform the GP a
with certain covariance function by:

a ∼ GP(0,K(X,X ′))
m

dα(X) = Fα(X) dX + L dW(X)
(12)

where α =
[
a a′ a′′ · · ·

]T, W(x) is a Wiener process with diffusion
matrix Q. The initial condition is α(X0) ∼ N (0,P∞), where P∞ is the
stationary covariance obtained from Lyapunov equation (Särkkä & Solin
2019).

References for this connection: Lindgren et al. (2011), Särkkä & Solin
(2019), Särkkä et al. (2013).
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State-space Representation of GP

A typical example is the Matérn kernel

K(X,X ′) = σ2 21−ν

Γ(ν)

(√
2ν|X −X ′|

`

)ν
Kν

(√
2ν|X −X ′|

`

)
,

for which we have

F =


0 1

0 1
...

. . .
−φ1λ

D −φ2λ
D−1 · · · −φDλ

 , L =


0
0
...
1

 ,
where λ =

√
2ν/`, D = ν + 1/2, and φi =

(
D
i−1
)
are the binomial

coefficients.
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Itô–Taylor GP State-space Model

Overall, our state-space Itô-1.5 GP regression model for the drift function
estimation is

dα(X) = Fα(X) dX + L dW(X),
Yk = g(α(Xk)) + εk(α(Xk)).

(13)

where the values of the parameters, for example, F and L depends on the
GP covariance function. The estimation of the posterior

p(α(X) | Y1, Y2, . . . , YN ), (14)

is clearly a Bayesian filtering and smoothing problem (Särkkä 2013).



State-space Gaussian Process for Drift Estimation in Stochastic Differential Equations
Zheng Zhao, Filip Tronarp, Roland Hostettler, and Simo Särkkä

14/26

Itô–Taylor GP State-space Model

When the measurement model is linear (i.e., use Euler–Maruyama), the
posterior

p(α(X) | Y1, Y2, . . . , YN ) = N (α(X); ms(X),Ps(X)), (15)

at X, is easily obtained by using Kalman filter and smoother, and is exactly
the same as of the full batch GP regression in linear computational
complexity.

Although our measurement model is non-linear (Itô-1.5), there are still
plenty of good solvers e.g., sigma-point (unscented, cubature,
Gauss–Hermite) filters and smoothers, and particle filters and smoothers.
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Numerical Experiments

Consider two synthetic toy models

dx = 3(x− x3) dt+ dW, x0 = 1, (16a)
dx = tanh(x) dt+ 0.01 dW, x0 = 0, (16b)

and we want to estimate their drift functions. The samples are generated
with small enough time intervals by Euler–Maruyama. We calculate the root
mean square error (RMSE) and CPU time with 1000 independent Monte
Carlo trials.

We choose Mátern ν = 5/2 kernel for GPs.
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Numerical Experiments

The following methods are chosen for comparison with naming convention.

I Full batch GP (GP).
I Fully independent conditional sparse GP (FIC).
I Deterministic training conditional sparse GP (DTC).
I Kalman filter and RTS smoother (KF-RTS)
I Unscented Kalman filter and RTS smoother (UKF-RTS)
I Iterated posterior linearization filter and smoother (IPLS) and RTS

smoother (IPLF-RTS).
More experiment setting details shall be found in the paper.
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Numerical Experiments

Figure 1: Demonstration of drift function estimation (∆t = 0.1 s) for model (16a)
and (16b), respectively. Shaded area stands for 0.95 confidence interval of
UKF-RTS.
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Numerical Experiments

Compare RMSE and CPU time

RMSE CPU Time (s)

Kalman 1.42 0.245
GP 1.42 330.034
Sparse GP (FIC) 1.49 0.225
Sparse GP (DTC) 1.49 0.044

Table 1: RMSE and CPU time of drift estimation for model (16a) with
Euler–Maruyam and ∆t = 0.002 s.
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Numerical Experiments

Compare RMSE with different ∆t

Figure 2: RMSE of drift estimation for model (16a) (left) and (16b) (right) as
function of ∆t.
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Demonstration on Real-world Data
Monthly sunspot activity dataset by WDCSILSO, Royal Observatory of
Belgium, Brussels.

Figure 3: Drift estimation results (right column) for sunspot (top left) data.
Shaded area stands for 0.95 confidence interval of IPLF-RTS.

The estimate seems reasonable, because the drift function for sunspot
activity was modeled with a linear plus bias form by physicians (Allen &
Huff 2010).
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Demonstration on Real-world Data
Electrocardiogram (ECG) motion dataset by Aalto university and Helsinki
University Central Hospital

Figure 4: Drift estimation results (right column) for EMG motion (bottom left)
data. GP gives out of memory error, as too many samples.

The estimated drift function has peak values around −0.1 mV and 0.1 mV,
which seems to correspond to the EMG significant magnitudes due to
human motion.
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Conclusion

Conclusion:
I The work is concerned with estimation of unknown drift functions of

SDEs from observations.
I We use non-parametric GP regression approach.
I We use more accurate measurement model by Itô–Taylor expansion,

where the vanilla GP regression is not applicable.
I We use Bayesian smoothing instead of batch GP regression resorting to

a linear computational complexity.
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