Imperial College London

RECONSTRUCTING NON-POINT SOURCES OF DIFFUSION FIELDS FROM SENSOR MEASUREMENTS

John Murray-Bruce and Pier Luigi Dragotti

Communications and Signal Processing Group, Electrical and Electronic Engineering, Imperial College London.

March 18, 2016

OUTLINE

Introduction

PDE-driven Inverse Problems

2 Source Reconstruction Framework

- Point Sources
- Line and Polygonal Sources
- 3 Simulation Results

4 Conclusions

INVERSE PROBLEMS

We consider physics-driven Inverse Problems

Traditional Sampling Set-up:

-The signal f(t) lies in a subspace, is sparse (e.g., CS), is parametric (e.g., FRI) -The acquisition device given by the set-up or by design (e.g., random matrix)

Sampling physical fields:

- No assumption on the field but on the sources,

- The acquisition device performs only temporal filtering, no spatial filtering

INVERSE PROBLEMS IN PHYSICS: DIFFUSION

DIFFUSION

Stochastic movement of a collection of particles from regions of high concentration to regions of lower concentration (until an equilibrium is established).

Sensor networks measure:

- Leakages in/from factories,
- Temperature in server rooms,
- Nuclear fallouts (Fukushima).

The field $u(\mathbf{x}, t)$ induced by a source distribution $f(\mathbf{x}, t)$ satisfies:

$$\frac{\partial}{\partial t}u(\mathbf{x},t) - \mu \nabla^2 u(\mathbf{x},t) = f(\mathbf{x},t).$$
(1)

INVERSE PROBLEMS IN PHYSICS: DIFFUSION

DIFFUSION

Stochastic movement of a collection of particles from regions of high concentration to regions of lower concentration (until an equilibrium is established).

Sensor networks measure:

- Leakages in/from factories,
- Temperature in server rooms,
- Nuclear fallouts (Fukushima).

The field $u(\mathbf{x}, t)$ induced by a source distribution $f(\mathbf{x}, t)$ satisfies:

$$\frac{\partial}{\partial t}u(\mathbf{x},t) - \mu \nabla^2 u(\mathbf{x},t) = f(\mathbf{x},t).$$
(1)

INVERSE PROBLEMS IN PHYSICS: WAVE

WAVE

A disturbance that travels through a medium from one location to another (transferring energy).

Such fields arise in acoustics, electromagnetics, fluid dynamics and so on. Sensor networks measure:

- Bioelectric neural currents in neurons of cerebral cortex (EEG/MEG),
- Pressure waves from a speaker/acoustic source.

$$\frac{1}{c^2}\frac{\partial^2}{\partial t^2}u(\mathbf{x},t)-\nabla^2 u(\mathbf{x},t)=f(\mathbf{x},t).$$

Other PDEs: Laplace's Equation, Advection-/Convection-Diffusion Equation, Helmholtz and many more.

Given these (spatiotemporal) measurements we may wish to find:

- source of factory leakage, detect plume sources
- find hot/cold spots in server clusters
- predict nuclear fallout concentration elsewhere
- center of mass of active regions
- acoustic source localization

Sources can be localized or non-localized \longrightarrow Parameterize sources f.

PROBLEM FORMULATION: FIELD SOURCES

Where,

- $L(\mathbf{x}) \in \Omega$ describes a line with endpoints $\{\boldsymbol{\xi}_1, \boldsymbol{\xi}_2\}$.
- $F(\mathbf{x}) \in \Omega$ describes a convex polygon with vertices $\{\boldsymbol{\xi}_1, \boldsymbol{\xi}_2, \dots, \boldsymbol{\xi}_M\}$.
- α_m, c_m, ξ_m and τ_m is the release rate, intensity, location and activation time of *m*-th source.

Let $u(\mathbf{x}, t)$ denote the field induced by a source distribution $f(\mathbf{x}, t)$ then a physics-driven system, in general, has the Green's function solution:

$$u(\mathbf{x},t) = (f * g)(\mathbf{x},t) = \int_{\mathbf{x}' \in \mathbb{R}^2} \int_{t' \in \mathbb{R}} g(\mathbf{x}',t') f(\mathbf{x}-\mathbf{x}',t-t') \, \mathrm{d}t' \mathrm{d}\mathbf{x}'$$
(2)

where $g(\mathbf{x}, t)$ is the Green function of the field. For e.g.,

2D diffusion field: $\frac{\partial}{\partial t}u(\mathbf{x},t) - \mu \nabla^2 u(\mathbf{x},t) = f(\mathbf{x},t)$, has $g(\mathbf{x},t) = \frac{1}{(4\pi t)^{d/2}}e^{-\frac{\|\mathbf{x}\|^2}{4\mu t}}H(t)$, where H(t) is the step function.

Aim

Estimate $f(\mathbf{x}, t)$ from spatiotemporal samples $\{\varphi_{n,l} = u(\mathbf{x}_n, t_l)\}_{n,l}$ for n = 1, ..., N and l = 0, ..., L, of the measured field.

Recall that

$$\begin{split} u(\mathbf{x},t) &= \int_{\mathbf{x}' \in \mathbb{R}^2} \int_{t' \in \mathbb{R}} g(\mathbf{x}',t') f(\mathbf{x}-\mathbf{x}',t-t') \, \mathrm{d}t' \mathrm{d}\mathbf{x}' \\ &= \langle f(\mathbf{x}',t'), g(\mathbf{x}-\mathbf{x}',t-t') \rangle_{\mathbf{x}',t'} \, . \end{split}$$

Mathematically the spatiotemporal sample $\varphi_{n,l}$ is

$$\varphi_{n,l} = u(\mathbf{x}_n, t_l) = \langle f(\mathbf{x}, t), g(\mathbf{x}_n - \mathbf{x}, t_l - t) \rangle_{\mathbf{x}, t}$$
(3)

Consider a weighted-sum of the samples $\{\varphi_{n,l}\}_{n,l}$:

$$\sum_{n=1}^{N} \sum_{l=0}^{L} w_{n,l} \varphi_{n,l} = \sum_{n=1}^{N} \sum_{l=0}^{L} w_{n,l} \langle f(\mathbf{x},t), g(\mathbf{x}_{n} - \mathbf{x}, t_{l} - t) \rangle_{\mathbf{x},t}$$
$$= \left\langle f(\mathbf{x},t), \underbrace{\sum_{n=1}^{N} \sum_{l=0}^{L} w_{n,l} g(\mathbf{x}_{n} - \mathbf{x}, t_{l} - t)}_{=\Psi_{k}(\mathbf{x})\Gamma(t)} \right\rangle, \qquad (4)$$

where $w_{n,l} \in \mathbb{C}$ are some arbitrary weights (to be determined). We wish to find $f(\mathbf{x}, t)$:

For our source types, can we choose functions Ψ_k(x) and Γ(t) that makes this problem tractable? — YES!

Let these (new) generalized measurements be

$$egin{aligned} &\mathcal{R}(k) = \sum_{n=1}^{N} \sum_{l=0}^{L} w_{n,l} arphi_{n,l} = \langle f(\mathbf{x},t), \Psi_k(\mathbf{x}) \Gamma(t)
angle \ &= \int_{\Omega} \int_{t \in [0,T]} \Psi_k(\mathbf{x}) \Gamma(t) f(\mathbf{x},t) \mathrm{d}t \mathrm{d}V, \end{aligned}$$

where $\Psi_k(\mathbf{x})$ for $k \in \mathbb{Z}^d$, $d = \{1, 2\}$, and $\Gamma(t)$ a family of properly chosen *spatial* and *temporal sensing functions*, respectively.

Proper choice \implies solvability & stability of new problem.

As an example, take the instantaneous source distribution

$$f(\mathbf{x},t) = \sum_{m=1}^{M} c_m \delta(\mathbf{x} - \boldsymbol{\xi}_m, t - \tau_m)$$
, then:

$$\mathcal{R}(k) = \sum_{m=1}^{M} c_m \Psi_k(\boldsymbol{\xi}_m) \Gamma(\boldsymbol{\tau}_m).$$

For
$$\mathbf{x} \in \mathbb{R}^2$$
, we may choose
• $\Gamma(t) = e^{-jt/T}$, and
• $\Psi_k(\mathbf{x}) = e^{-k(x_1+jx_2)}$, for $k = 0, 1, \dots, K$.
Then,

$$egin{aligned} \mathcal{R}(k) &= \sum_{m=1}^{M} c_m e^{-\mathrm{j} au_m/T} e^{-k(\xi_{1,m}+\mathrm{j}\xi_{2,m})} \ &= \sum_{m=1}^{M} c_m' \mathrm{v}_m^k. \end{aligned}$$

Can be solved to jointly recover $c'_m = c_m e^{-j\tau_m/T}$ and $v_m = e^{-(\xi_{1,m}+j\xi_{2,m})}$ using Prony's method for m = 1, ..., M providing $K \ge 2M - 1$.

LINE SOURCE

Instantaneous case: $f(\mathbf{x}, t) = cL(\mathbf{x})\delta(t - \tau)$, thus $\mathcal{R}(k)$ reduces to:

$$\begin{aligned} \mathcal{R}(k) &= \int_{\Omega} \int_{t} \Psi_{k}(\mathbf{x}) \Gamma(t) f(\mathbf{x}, t) \mathrm{d}t \mathrm{d}V \\ &= c \Gamma(\tau) \int_{\Omega} \Psi_{k}(\mathbf{x}) \mathcal{L}(\mathbf{x}) \mathrm{d}V \\ &= c \Gamma(\tau) \int_{\mathcal{L}(\mathbf{x})} \Psi_{k}(\mathbf{x}) \mathrm{d}S \\ &= \frac{1}{k} c \ell(\boldsymbol{\xi}_{1}, \boldsymbol{\xi}_{2}) \Gamma(\tau) \sum_{m=1}^{2} (-1)^{m} \Psi_{k}(\boldsymbol{\xi}_{m}) \end{aligned}$$

LINE SOURCE

From $\mathcal{R}(k) = \frac{1}{k}c\ell(\boldsymbol{\xi}_1, \boldsymbol{\xi}_2)\Gamma(\tau)\sum_{m=1}^{2}(-1)^m\Psi_k(\boldsymbol{\xi}_m)$ and the usual choice for sensing functions $\Gamma(t) = e^{-jt/T}$ and $\Psi_k(\mathbf{x}) = e^{-k(x_1+jx_2)}$, then:

$$\mathcal{R}'(k) \triangleq k\mathcal{R}(k) = c\ell(\boldsymbol{\xi}_1, \boldsymbol{\xi}_2)\Gamma(\tau) \sum_{m=1}^2 (-1)^m \Psi_k(\boldsymbol{\xi}_m)$$

 $= c\ell(\boldsymbol{\xi}_1, \boldsymbol{\xi}_2) e^{-j\tau/T} \sum_{m=1}^2 (-1)^m e^{-k(\xi_{1,m}+j\xi_{2,m})}$

Can again recover c, τ and the endpoints ξ_1 and ξ_2 of the line source using Prony's method (providing $K \geq 3$).

For polygonal sources: surface integral \rightarrow line integral $\rightarrow \Psi_k$ evaluated at vertices

Computing $\mathcal{R}(k)$ reliably from sensor Measurements?

Recall that,

$$\mathcal{R}(k) = \sum_{n=1}^{N} \sum_{l=0}^{L} w_{n,l} \varphi_{n,l}$$

Thus computing $\mathcal{R}(k)$ is equivalent to finding the weights $w_{n,l}$. These weights may be found:

- Using Green's second identity
 - For 2D diffusion field.
- 2 Formulating and solving a linear system (explicitly)
 - Inversion of large matrices.
 - Conditioning and stability considerations.
- B Results from non-uniform/universal sampling theory?
 - Stable iterative/non-iterative algorithms.

We desire $\{w_{n,l}\}_{n,l}$, so that $\sum_{n=1}^{N} \sum_{l=0}^{L} w_{n,l}g(\mathbf{x}_n - \mathbf{x}, t_l - t) = \Psi_k(\mathbf{x})\Gamma(t)$, where g, Ψ_k and Γ are known.

For e.g. the 2D heat problem $g(\mathbf{x}, t) = \frac{1}{4\pi t} e^{-\frac{\|\mathbf{x}\|^2}{4\mu t}} H(t)$, and we may choose, $\Psi_k(\mathbf{x}) = e^{-k(x_1+jx_2)}$ and $\Gamma(t) = e^{-jt/T}$.

Can formulate a linear system as follows:

$$\begin{bmatrix} g(\mathbf{x}_{1} - \mathbf{x}_{1}', t_{l} - t_{j}) & \cdots & g(\mathbf{x}_{N} - \mathbf{x}_{1}', t_{l} - t_{j}) \\ \vdots & \vdots & \vdots \\ g(\mathbf{x}_{1} - \mathbf{x}_{l}', t_{l} - t_{j}) & \cdots & g(\mathbf{x}_{N} - \mathbf{x}_{l}', t_{l} - t_{j}) \end{bmatrix} \begin{bmatrix} \mathbf{w}_{1,l} \\ \vdots \\ \mathbf{w}_{N,l} \end{bmatrix} = \begin{bmatrix} \Psi_{k}(\mathbf{x}_{1}')\Gamma(t_{j}) \\ \vdots \\ \Psi_{k}(\mathbf{x}_{l}')\Gamma(t_{j}) \end{bmatrix}$$
$$\mathbf{G}_{l,j}\mathbf{w}_{l} = \mathbf{p}_{j}$$
$$\Rightarrow \begin{bmatrix} \mathbf{G}_{0,1} & \cdots & \mathbf{G}_{0,j} \\ \vdots & \vdots \\ \mathbf{G}_{L,1} & \cdots & \mathbf{G}_{L,j} \end{bmatrix}^{\top} \begin{bmatrix} \mathbf{p}_{1} \\ \vdots \\ \mathbf{p}_{j} \end{bmatrix} = \begin{bmatrix} \Psi_{k}(\mathbf{x}_{1}')\Gamma(t_{1}) \\ \vdots \\ \Psi_{k}(\mathbf{x}_{l}')\Gamma(t_{j}) \end{bmatrix}$$
$$\mathbf{G}\mathbf{w} = \mathbf{p}$$

Solve $\mathbf{G}\mathbf{w} = \mathbf{p}$, where $\mathbf{G} \in \mathbb{R}^{N(L+1) \times IJ}$, $\mathbf{w} \in \mathbb{R}^{N(L+1)}$ and $\mathbf{p} \in \mathbb{R}^{IJ}$.

I Green's second identity: Let $u(\mathbf{x}, t)$ and $\Psi_k(\mathbf{x})$ be scalar functions in C^2 , over $\Omega \in \mathbb{R}^2$, then: $\oint_{\partial \Omega} (\Psi_k \nabla u - u \nabla \Psi_k) \cdot \hat{\mathbf{n}}_{\partial \Omega} \mathrm{d}S = \int_{\partial \Omega} (\Psi_k \nabla^2 u - u \nabla^2 \Psi_k) \mathrm{d}V,$ where $\hat{\mathbf{n}}_{\partial\Omega}$ is the outward pointing unit normal to the boundary $\partial\Omega$. 2 Substitute (inhomogenous) PDE and choose Ψ_k to satisfy $\frac{\partial \Psi_k}{\partial t} + \mu \nabla^2 \Psi_k = 0$, thus: $\int_{\Omega} \frac{\partial}{\partial t} (u \Psi_k) \mathrm{d}V - \mu \oint_{\Omega} (\Psi_k \nabla u - u \nabla \Psi_k) \cdot \hat{\mathbf{n}}_{\partial \Omega} \mathrm{d}S = \int_{\Omega} \Psi_k f \mathrm{d}V.$ **3** Multiply through by $\Gamma(t)$ and integrate over t = [0, T]: $\underbrace{\int_{0}^{T} \Gamma \int_{\Omega} \Psi_{k} \frac{\partial u}{\partial t} + u \frac{\partial \Psi_{k}}{\partial t} \mathrm{d}V - \mu \oint_{\partial \Omega} (\Psi_{k} \nabla u - u \nabla \Psi_{k}) \cdot \hat{\mathbf{n}}_{\partial \Omega} \mathrm{d}S \mathrm{d}t} = \int_{\Omega} \int_{0}^{T} \Psi_{k} \Gamma f \, \mathrm{d}t \, \mathrm{d}V$ $=\mathcal{R}(k)$

From:

$$\underbrace{\int_{0}^{T} \Gamma \int_{\Omega} \Psi_{k} \frac{\partial u}{\partial t} + u \frac{\partial \Psi_{k}}{\partial t} dV - \mu \oint_{\partial \Omega} (\Psi_{k} \nabla u - u \nabla \Psi_{k}) \cdot \hat{\mathbf{n}}_{\partial \Omega} dS dt}_{=\mathcal{R}(k)} = \int_{\Omega} \int_{0}^{T} \Psi_{k} \Gamma f dt dV$$
$$\Rightarrow \mathcal{R}(k) = \langle f(\mathbf{x}, t), \Psi_{k}(\mathbf{x}) \Gamma(t) \rangle$$

As such we can obtain $\{\mathcal{R}(k)\}$ by **approximating the integrals** from the spatiotemporal samples using standard quadrature schemes.

- Mesh required.
- Integral simply a linear combination of field samples.
- Distributed computation (consensus-based estimation).

1 INTRODUCTION

- Motivation
- Problem Formulation

2 Source Reconstruction Framework

- Point Sources
- Line Source
- Computing $\mathcal{R}(k)$

3 SIMULATION RESULTS

4 CONCLUSION

SYNTHETIC DATA: POINT DIFFUSION SOURCE

Distributed estimation for M = 1 source using 45 sensors, field is sampled for $T_{end} = 10s$ at $\frac{1}{\Delta t} = 1Hz$. K = 1.

Synthetic data: Line Diffusion Source

N = 45 arbitrarily placed sensors, field sampled at 10Hz for T = 10s with measurement SNR= 20dB. K = 6 and R = 5.

Synthetic data: Triangular Diffusion Source

N = 90 arbitrarily placed sensors, field sampled at 10Hz for T = 10s with measurement SNR= 35dB. K = 6 and R = 5.

SIMULATION RESULTS: REAL DIFFUSION DATA

(c) Real field (left) and its reconstruction (right) at t = 8.2s.

SIMULATION RESULTS: LAPLACE - SYNTHETIC DATA

FIGURE 1: Single point source recovery in 3D using samples obtained by N = 57 sensors with $K_1 = K_2 = 1$ for spatial sensing function family. Results for 20 independent trials are given.

FURTHER EXTENSIONS

Reconstructing non-localized sources: line and (convex) polygons.

- Compute generalized measurements.
- Use tools from complex analysis to modify $\mathcal{R}(k)$.
- Recover endpoints (vertices) of line (polygonal) source.

FURTHER EXTENSIONS

Reconstructing non-localized sources: line and (convex) polygons.

- Compute generalized measurements.
- Use tools from complex analysis to modify $\mathcal{R}(k)$.
- Recover endpoints (vertices) of line (polygonal) source.
- 2 Further extensions
 - Reconstructing localized sources in bounded regions (rooms).
 - 3D source recovery.

FURTHER EXTENSIONS

Reconstructing non-localized sources: line and (convex) polygons.

- Compute generalized measurements.
- Use tools from complex analysis to modify $\mathcal{R}(k)$.
- Recover endpoints (vertices) of line (polygonal) source.
- 2 Further extensions
 - Reconstructing localized sources in bounded regions (rooms).
 - 3D source recovery.

3 Generalisation Possible?

- Same principle can be generalized to PDE-driven fields: wave, Poisson etc.
- How to compute the field analysis coefficients $\{w_{n,l}\}$?
- Turn to FRI theory: exponential reproduction.

Thank You.