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INVERSE PROBLEMS

We consider physics-driven Inverse Problems

Traditional Sampling Set-up:

f) eV ———1 o(t) e’ Ym

-The signal f(t) lies in a subspace, is sparse (e.g., CS), is parametric (e.g., FRI)
-The acquisition device given by the set-up or by design (e.g., random matrix)

Sampling physical fields:

sources: field: _
s(z,t) €V PDE flz,t) eWw o(z,t) Ymn

- No assumption on the field but on the sources,
- The acquisition device performs only temporal filtering, no spatial filtering
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INVERSE PROBLEMS IN PHYSICS: DIFFUSION

DIFFUSION

Stochastic movement of a collection of particles from regions of high
concentration to regions of lower concentration (until an equilibrium is
established).

Sensor networks measure:
m Leakages in/from factories, X
m Temperature in server rooms, *%° o

m Nuclear fallouts (Fukushima).

The field u(x, t) induced by a source distribution f(x, t) satisfies:

%u(x7 t) — pV2u(x, t) = f(x, t). (1)
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INVERSE PROBLEMS IN PHYSICS: WAVE

A disturbance that travels through a medium from one location to
another (transferring energy).

Such fields arise in acoustics, electromagnetics, fluid dynamics and so on.
Sensor networks measure:

m Bioelectric neural currents in
neurons of cerebral cortex
(EEG/MEG),

m Pressure waves from a
speaker/acoustic source.

1 02

gﬁu(x, t) — V2u(x, t) = f(x, t).
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SENSOR NETWORKS AND INVERSE PROBLEMS

Other PDEs: Laplace's Equation, Advection-/Convection-Diffusion
Equation, Helmholtz and many more.
Given these (spatiotemporal) measurements we may wish to find:

m source of factory leakage, detect plume sources
m find hot/cold spots in server clusters

m predict nuclear fallout concentration elsewhere
m center of mass of active regions

m acoustic source localization

Sources can be localized or non-localized — Parameterize sources f.
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PROBLEM FORMULATION: FIELD SOURCES

Instantaneous Non-Instantaneous

- M M

§ f(x, t)= E CmO(X—Emy t—Tm) f(x, t)= E Cme®mE=Tm) 5(x— g YH(t—Tm)
m=1 m=1

g

i f(x, t)=cL(x)é(t — 7) f(x, t)=cL(x)e*C~ T H(t — )

2 f(x, t)=cF(x)d(t — ) f(x, t)=cF(x)e“t=IH(t — 1)

&

Where,

m L(x) € Q describes a line with endpoints {&€1, &5}
m F(x) € Q describes a convex polygon with vertices {£1,&2,...,&m}.

B Qm, Cm,&m and 7, is the release rate, intensity, location and activation
time of m-th source.
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ProBLEM FOrRMULATION: FieLD PDE MODEL

Let u(x, t) denote the field induced by a source distribution f(x, t) then a
physics-driven system, in general, has the Green's function solution:

u(x, t) = (F * g)(x, t):/IGRZ /tleRg(x',t’)f(x—x’,t—t’)dt’dx' 2)

where g(x, t) is the Green function of the field.
For e.g.,

= 2D diffusion field: 2 u(x,t) — pV2u(x,t) = f(x,t), has

g(x,t) = We H Jf H(t), where H(t) is the step function.
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PrROBLEM FORMULATION: FIELD MEASUREMENTS

A1Mm

Estimate f(x, t) from spatiotemporal samples {¢, | = u(Xn, t;)}n, for
n=1,...,Nand I =0,...,L, of the measured field.

f—> g(-) I R AR AT TA N[0
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SOURCE RECONSTRUCTION FRAMEWORK

Recall that
u(x, t) = / / g(xX, t"f(x —x',t — t')dt'dx’
x' €R2 Jt'eR
= <f(X/, t/)ag(x - X/, t— t/)>x’,t’ :
Mathematically the spatiotemporal sample ¢, is

Pn,l = U(Xn, tl)
= <f(X, t)a g(xn - Xt = t)>x7t (3)
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Consider a weighted-sum of the samples {¢n ;}n

NoL
DD Wniens =

n=1 |=0

3
IIMZ
-

L
Z Wh,1 <f(x7 t)7g(x" — X, t— t)>x,t
1=0

L
f(x, t),ZZWn,/g(xn_xa t— t)> ) (4)

n=1 /=0

Il
—

=V (x)r (1)
where w, ; € C are some arbitrary weights (to be determined).
We wish to find f(x, t):

m For our source types, can we choose functions W (x) and I'(t) that
makes this problem tractable? — YES!
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Let these (new) generalized measurements be

R(K) =D waons = (F(x, ), V(X (2))

n=1 /=0

:// W ()l (t)f(x, t)dtdV,
QJtel0,T]

where Wy (x) for k € Z9, d = {1,2}, and '(t) a family of properly chosen
spatial and temporal sensing functions, respectively.
Proper choice = solvability & stability of new problem.

m As an example, take the instantaneous source distribution

M
f(x,t) = Z CmO(x — Em, t — Tm), then:
m=1

R(K)= 3 enVi(€n)T (7).
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CHOICE OF SENSING FUNCTIONS: 2D CASE

For x € R?, we may choose

m [(t)=e/T, and

m VU (x) = e kbatie) for k =0,1,..., K.
Then,

Cme—ij/ T g—k(&,m+i&2,m)

M=

R(k) =

3
Il

Il
M=
3~
§<>

1

3
I

Can be solved to jointly recover ¢/, = cpe ™/ 7 and v,, = e~ (&1mtic2m)
using Prony’s method for m=1,..., M providing K > 2M — 1.

MURRAY-BRUCE AND DrAGOTTI (EEE-CSP) ESTIMATING SOURCES OF DIFFUSION



LINE SOURCE

Instantaneous case: f(x,t) = cL(x)d(t — 7), thus R(k) reduces to:
R(k) :/Q/\Ilk(x)r(t)f(x, t)dtdV
=cl(7) /Q\Ilk(x)L(x)dV
—T(7) /L s

2

_ %cz(gl,gz)r(ﬂ > (1) (€m)

m=1
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LINE SOURCE

From R(k) = £cl(&1, &) (7) Z( 1)"W(&m) and the usual choice for
m=1
sensing functions [(t) = e73t/T and W, (x) = e k(x1+i%) | then:

2

R/ (k) £ kR(k) = cl(&1,&)M(7) > (1) Vi (&m)

m=1

2
= cl(&,&)e /T Z(_l)mefk(sl,mﬂsz,m)
m=1

Can again recover ¢, 7 and the endpoints &; and &; of the line source
using Prony’s method (providing K > 3).

m For polygonal sources:
surface integral — line integral — W, evaluated at vertices
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COMPUTING R(k) RELIABLY FROM SENSOR

MEASUREMENTS?

Recall that,
N oL

R(k) = Z Z Wp,1Pn,

n=1 /=0
Thus computing R(k) is equivalent to finding the weights w, ;. These
weights may be found:
Using Green's second identity
m For 2D diffusion field.
Formulating and solving a linear system (explicitly)

m Inversion of large matrices.
m Conditioning and stability considerations.

Results from non-uniform/universal sampling theory?
m Stable iterative/non-iterative algorithms.
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EXPLICIT COMPUTATION OF WEIGHTS {W,}n,

We desire {Wp,j}n/, S0 that S°% S~ wyig(xe —x, t — t) = Wi(x)I(t), where
g,V and I are known.
lx)?
1 —

For e.g. the 2D heat problem g(x,t) = ;e % H(t), and we may

choose, Wy (x) = e kbatix) and I'(t) = eit/7.

Can formulate a linear system as follows:

gl —x,t—t) - glxn —xi,t — ) w7 [ WD) ]
g(x1 — Xi, t—t) - glxy— XI;, t — t;) |> WI.V,I E L "Uk(x;‘)r(tj) |
G/ jw; = p;
Goi - Goy 7' [ P T [ we(xr(t) ]
= [ : . ‘| l . = .
G -+ Guy bl | v |
Gw = p

Solve Gw = p, where G € RV(LAD)xU '\ ¢ RNV(LH1) gpd p € RY.
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IMPLICIT COMPUTATION OF WEIGHTS {wp },/

Green’s second identity: Let u(x,t) and W(x) be scalar functions
in C2, over Q € R2?, then:

j{ (V Vu—uVWy) - ﬁans:/(kaQu—uv%uk) dv,
o9 Q
where figq is the outward pointing unit normal to the boundary 09Q.

pl Substitute (inhomogenous) PDE and choose Wy to satisfy
e 4 V2V = 0, thus:

/g(u\llk)dvfu% (W Vu — uV¥y) - ﬁagdS:/\kadV.
Q t o0 Q

Multiply through by I'(t) and integrate over t = [0, T]:

1o} ov
/ /\Uk—quu de uf (\l!kVuf vak) NpndSdt // vV, rfdedVv
N
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IMPLICIT COMPUTATION OF WEIGHTS {wp },/

From'

ou oV ~ 4
\Uk + 7dV—,u (W Vu — uVV,) figedSdt= Vv, rfdedVv
0N QJo

=R (k)

= R(k) = (f(x, 1), Vi (x)[(t))
As such we can obtain {R(k)} by approximating the integrals from
the spatiotemporal samples using standard quadrature schemes.
m Mesh required.
m Integral simply a linear combination of field samples.

m Distributed computation (consensus-based estimation).
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SIMULATION RESULTS




SYNTHETIC DATA: POINT DIFFUSION SOURCE

Evolution of Intensity Estimates

10
Z
2
] 5
Q@
<

00 500 1000 1500 2000 ><N

Number of Messages

0E> Evolution of Activation Time Estimates
= 10
S
= 5
o
>
) Y
<L() 0 500 1000 1500 2000

Number of Messages

Distributed estimation for M = 1 source using 45 sensors, field is
sampled for T.,y = 10s at ﬁ =1Hz. K=1.
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SYNTHETIC DATA: LINE DIFFUSION SOURCE

Location Estimates
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1 Independent Trial Index

N = 45 arbitrarily placed sensors, field sampled at 10Hz for T = 10s
with measurement SNR= 20dB. K =6 and R = 5.
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SYNTHETIC DATA: TRIANGULAR DIFFUSION SOURCE

Estimates of Source Vertices Activation Time Estimates
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N = 90 arbitrarily placed sensors, field sampled at 10Hz for T = 10s
with measurement SNR= 35dB. K =6 and R = 5.
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SIMULATION RESULTS: REAL DIFFUSION DATA

True Thermal Field (=7.15) Reconstructed Thermal Field (t=7.15)

Initial Thermal Map

(b) Real field (left) and its reconstruction (right) at ¢ = 7.1s.

True Thermal Field (1=8.25) Reconstructed Thermal Field (1=8.25)

X,
1

(a) Thermal distribution (immediately after
activation) and location estimates. (c) Real field (left) and its reconstruction (right) at ¢ = 8.2s.




SIMULATION RESULTS: LAPLACE - SYNTHETIC DATA

Intensity

FIGURE 1: Single point source recovery in 3D using samples obtained by
N = 57 sensors with K1 = K, = 1 for spatial sensing function family. Results
for 20 independent trials are given.
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FURTHER EXTENSIONS

Reconstructing non-localized sources: line and (convex) polygons.
m Compute generalized measurements.
m Use tools from complex analysis to modify R(k).
m Recover endpoints (vertices) of line (polygonal) source.
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Reconstructing non-localized sources: line and (convex) polygons.
m Compute generalized measurements.
m Use tools from complex analysis to modify R(k).
m Recover endpoints (vertices) of line (polygonal) source.

Further extensions

m Reconstructing localized sources in bounded regions (rooms).
m 3D source recovery.
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FURTHER EXTENSIONS

Reconstructing non-localized sources: line and (convex) polygons.
m Compute generalized measurements.
m Use tools from complex analysis to modify R(k).
m Recover endpoints (vertices) of line (polygonal) source.

Further extensions

m Reconstructing localized sources in bounded regions (rooms).
m 3D source recovery.

Generalisation Possible?

m Same principle can be generalized to PDE-driven fields: wave,
Poisson etc.

m How to compute the field analysis coefficients {w; }?
m Turn to FRI theory: exponential reproduction.
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Thank You.
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