

A. Rosuel, P. Vallet, P. Loubaton, X. Mestre

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Funded by ANR HIDITSA.

May 2020

Introduction	Main results on Ĉ _V	Application to spectral detection	Conclusion
•00			
Introduction	- Setting		

$$\mathbf{y}_n = \underbrace{\sum_{k=0}^{+\infty} \mathbf{H}_k \boldsymbol{\epsilon}_{n-k}}_{=\mathbf{u}_n} + \mathbf{v}_n \in \mathbb{C}^M$$

Introduction	Main results on Ĉ _y	Application to spectral detection	Conclusion
•00	00	0000	
Introduction	- Setting		

$$\mathbf{y}_n = \underbrace{\sum_{k=0}^{+\infty} \mathbf{H}_k \boldsymbol{\epsilon}_{n-k}}_{=\mathbf{u}_n} + \mathbf{v}_n \in \mathbb{C}^M$$

• $(\mathbf{v}_n)_{n \in \mathbb{Z}}$ additive noise stationary complex Gaussian time series

• components time series $(v_{1,n})_n \in \mathbb{Z}, \ldots, (v_{M,n})_n \in \mathbb{Z}$ are mutually independent.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Introduction	Main results on Ĉ _V	Application to spectral detection	Conclusion
000			
Introduction	- Setting		

$$\mathbf{y}_n = \underbrace{\sum_{k=0}^{+\infty} \mathbf{H}_k \boldsymbol{\epsilon}_{n-k}}_{=\mathbf{u}_n} + \mathbf{v}_n \in \mathbb{C}^M$$

- $(\mathbf{v}_n)_{n \in \mathbb{Z}}$ additive noise stationary complex Gaussian time series
- components time series $(v_{1,n})_n \in \mathbb{Z}, \ldots, (v_{M,n})_n \in \mathbb{Z}$ are mutually independent.
- $(\mathbf{u}_n)_{n \in \mathbb{Z}}$ useful signal : output of causal and stable $M \times K$ MIMO filter driven by a white noise $(\epsilon_n)_{n \in \mathbb{Z}} \sim \mathcal{N}_{\mathbb{C}^K}(\mathbf{0}, \mathbf{I}_K)$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Introduction	Main results on Ĉ _V	Application to spectral detection	Conclusion
000			
Introduction	- Setting		

$$\mathbf{y}_n = \underbrace{\sum_{k=0}^{+\infty} \mathbf{H}_k \boldsymbol{\epsilon}_{n-k}}_{=\mathbf{u}_n} + \mathbf{v}_n \in \mathbb{C}^M$$

- $(\mathbf{v}_n)_{n \in \mathbb{Z}}$ additive noise stationary complex Gaussian time series
- components time series $(v_{1,n})_n \in \mathbb{Z}, \ldots, (v_{M,n})_n \in \mathbb{Z}$ are mutually independent.
- $(\mathbf{u}_n)_{n \in \mathbb{Z}}$ useful signal : output of causal and stable $M \times K$ MIMO filter driven by a white noise $(\epsilon_n)_{n \in \mathbb{Z}} \sim \mathcal{N}_{\mathbb{C}^K}(\mathbf{0}, \mathbf{I}_K)$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

• Denote (S_y, C_y) the spectral (density, coherency) matrix of $(y_n)_n$

Introduction	Main results on Ĉ _V	Application to spectral detection	Conclusion
000			
Introduction	- Setting		

$$\mathbf{y}_n = \underbrace{\sum_{k=0}^{+\infty} \mathbf{H}_k \boldsymbol{\epsilon}_{n-k}}_{=\mathbf{u}_n} + \mathbf{v}_n \in \mathbb{C}^M$$

- (v_n)_{n∈Z} additive noise stationary complex Gaussian time series
- components time series $(v_{1,n})_n \in \mathbb{Z}, \ldots, (v_{M,n})_n \in \mathbb{Z}$ are mutually independent.
- $(\mathbf{u}_n)_{n \in \mathbb{Z}}$ useful signal : output of causal and stable $M \times K$ MIMO filter driven by a white noise $(\epsilon_n)_{n \in \mathbb{Z}} \sim \mathcal{N}_{\mathbb{C}^K}(\mathbf{0}, \mathbf{I}_K)$

• Denote (S_y, C_y) the spectral (density, coherency) matrix of $(y_n)_n$

Frequency domain detection hypothesis test - Sy

 $\begin{array}{l} \mathcal{H}_0: S_{\textbf{y}}(\nu) = \operatorname{diag}(S_{\textbf{y}}(\nu)) = S_{\textbf{v}}(\nu) \text{ (noise only) vs} \\ \mathcal{H}_1: S_{\textbf{y}}(\nu) = \textbf{H}(\nu)\textbf{H}(\nu)^* + S_{\textbf{v}}(\nu) \neq \operatorname{diag}(S_{\textbf{y}}(\nu)) \text{ (signal+noise)} \\ (\textbf{H}(\nu) \text{ is the Fourier transform of } (\textbf{H}_k)_k) \end{array}$

Introduction	Main results on Ĉ _V	Application to spectral detection	Conclusion
000	00	0000	
Introduction	- Setting		

$$\mathbf{y}_n = \underbrace{\sum_{k=0}^{+\infty} \mathbf{H}_k \boldsymbol{\epsilon}_{n-k}}_{=\mathbf{u}_n} + \mathbf{v}_n \in \mathbb{C}^M$$

- (v_n)_{n∈Z} additive noise stationary complex Gaussian time series
- components time series $(v_{1,n})_n \in \mathbb{Z}, \ldots, (v_{M,n})_n \in \mathbb{Z}$ are mutually independent.
- $(\mathbf{u}_n)_{n \in \mathbb{Z}}$ useful signal : output of causal and stable $M \times K$ MIMO filter driven by a white noise $(\epsilon_n)_{n \in \mathbb{Z}} \sim \mathcal{N}_{\mathbb{C}^K}(\mathbf{0}, \mathbf{I}_K)$
- Denote (S_y, C_y) the spectral (density, coherency) matrix of $(y_n)_n$

Frequency domain detection hypothesis test - Sy

 $\begin{array}{l} \mathcal{H}_0: S_{\textbf{y}}(\nu) = \operatorname{diag}(S_{\textbf{y}}(\nu)) = S_{\textbf{v}}(\nu) \text{ (noise only) vs} \\ \mathcal{H}_1: S_{\textbf{y}}(\nu) = \textbf{H}(\nu)\textbf{H}(\nu)^* + S_{\textbf{v}}(\nu) \neq \operatorname{diag}(S_{\textbf{y}}(\nu)) \text{ (signal+noise)} \\ (\textbf{H}(\nu) \text{ is the Fourier transform of } (\textbf{H}_k)_k) \end{array}$

With
$$C_y(\nu) := \operatorname{diag}(S_y(\nu))^{-\frac{1}{2}}S_y(\nu)\operatorname{diag}(S_y(\nu))^{-\frac{1}{2}}$$

Frequency domain detection hypothesis test - Cy

 $\mathcal{H}_0: \mathbf{C}_{\mathbf{y}} = \mathbf{I}_M$ (pure noise) vs $\mathcal{H}_1: \mathbf{C}_{\mathbf{y}} \neq \mathbf{I}_M$ (signal + noise). Use frequency domain estimators of $\mathbf{C}_{\mathbf{y}}$ to test if $\mathbf{u}_n = 0$.

Introduction	Main results on Ĉ _y	Application to spectral detection	Conclusion
○●○	OO		O
Introduction - Sig	nal detection context		

Introduction	Main results on Ĉ _y	Application to spectral detection	Conclusion
000	00	0000	0
Introduction	- Signal detection cont	text	
High dimer	sional regime : K fixed $\ll M$	$1. N \rightarrow +\infty$	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Relevant large dimensional regime in econometrics

- late 90' : Generalized dynamic linear factor models
- other underlying assumptions are not relevant in our context

Introduction	Main results on Ĉ _y	Application to spectral detection	Conclusion
000	00	0000	
Introduction	- Signal detection cont	ext	
merodacetion	olonal actoction cont		

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

High dimensional regime : K fixed $\ll M, N \rightarrow +\infty$

Relevant large dimensional regime in econometrics

- late 90' : Generalized dynamic linear factor models
- other underlying assumptions are not relevant in our context

Relevant large dimensional regime in array processing

• finite $K imes \mathcal{O}(1)$ signal eigenvalues vs $M imes \mathcal{O}(1)$ noise eigenvalues

• SNR
$$\rho = \frac{\mathbb{E} ||\mathbf{u}_n||^2}{\mathbb{E} ||\mathbf{v}_n||^2} = \mathcal{O}(\frac{1}{M})$$
 is of special interest.

Introduction	Main results on Ĉ _y	Application to spectral detection	Conclusion
○●○	OO	0000	O
Introduction - Sig	nal detection context		

Relevant large dimensional regime in econometrics

- late 90' : Generalized dynamic linear factor models
- other underlying assumptions are not relevant in our context

Relevant large dimensional regime in array processing

• finite $\mathcal{K} imes \mathcal{O}(1)$ signal eigenvalues vs $M imes \mathcal{O}(1)$ noise eigenvalues

• SNR
$$\rho = \frac{\mathbb{E} \|\mathbf{u}_n\|^2}{\mathbb{E} \|\mathbf{v}_n\|^2} = \mathcal{O}(\frac{1}{M})$$
 is of special interest.

• Important existing work : so-called spiked model, static / narrowband models (additive noise is temporally and spatially white and signal is $u_n = H_0 \epsilon_n$)

Introduction	Main results on Ĉ _y	Application to spectral detection	Conclusion
○●○	OO	0000	O
Introduction - Sig	nal detection context		

Relevant large dimensional regime in econometrics

- late 90' : Generalized dynamic linear factor models
- other underlying assumptions are not relevant in our context

Relevant large dimensional regime in array processing

• finite $\mathcal{K} imes \mathcal{O}(1)$ signal eigenvalues vs $M imes \mathcal{O}(1)$ noise eigenvalues

• SNR
$$\rho = \frac{\mathbb{E} \|\mathbf{u}_n\|^2}{\mathbb{E} \|\mathbf{v}_n\|^2} = \mathcal{O}(\frac{1}{M})$$
 is of special interest.

• Important existing work : so-called spiked model, static / narrowband models (additive noise is temporally and spatially white and signal is $u_n = H_0 \epsilon_n$)

• Considerable work still needed for dynamic / wideband models

Introduction	Main results on Ĉ _y	Application to spectral detection	Conclusion
○●○	00	0000	O
Introduction - Sig	nal detection context		

Relevant large dimensional regime in econometrics

- late 90' : Generalized dynamic linear factor models
- other underlying assumptions are not relevant in our context

Relevant large dimensional regime in array processing

• finite $\mathcal{K} imes \mathcal{O}(1)$ signal eigenvalues vs $M imes \mathcal{O}(1)$ noise eigenvalues

• SNR
$$\rho = \frac{\mathbb{E} \|\mathbf{u}_n\|^2}{\mathbb{E} \|\mathbf{v}_n\|^2} = \mathcal{O}(\frac{1}{M})$$
 is of special interest.

- Important existing work : so-called spiked model, static / narrowband models (additive noise is temporally and spatially white and signal is $u_n = H_0 \epsilon_n$)
- Considerable work still needed for dynamic / wideband models
- Temporal approaches also possible, but frequency ones turns out to be simpler.

Introduction	Main results on Ĉ _y	Application to spectral detection	Conclusion
000	00	0000	

Fourier frequencies set : $\mathcal{V}_N = \{0, \frac{1}{N}, \dots, \frac{N-1}{N}\}$

Introduction	Main results on Ĉ _y	Application to spectral detection	Conclusion
000	00	0000	0

Fourier frequencies set : $V_N = \{0, \frac{1}{N}, \dots, \frac{N-1}{N}\}$

Finite Fourier transform :

$$\boldsymbol{\xi}_{\mathbf{y}}(
u) = rac{1}{\sqrt{N}} \sum_{n=1}^{N} \mathbf{y}_n \mathrm{e}^{-\mathrm{i} 2\pi
u (n-1)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	Main results on Ĉ _v	Application to spectral detection	Conclusion
000	00	0000	0

Fourier frequencies set : $\mathcal{V}_N = \{0, \frac{1}{N}, \dots, \frac{N-1}{N}\}$

Finite Fourier transform :

$$\boldsymbol{\xi}_{\mathbf{y}}(\nu) = \frac{1}{\sqrt{N}} \sum_{n=1}^{N} \mathbf{y}_n \mathrm{e}^{-\mathrm{i} 2\pi \nu (n-1)}$$

Smoothed periodogram estimator of the spectral density matrix :

$$\hat{\mathbf{S}}_{\mathbf{y}}(\nu) = \frac{1}{B+1} \sum_{b=-B/2}^{B/2} \boldsymbol{\xi}_{\mathbf{y}} \left(\nu + \frac{b}{N}\right) \boldsymbol{\xi}_{\mathbf{y}} \left(\nu + \frac{b}{N}\right)^* \quad (B: \text{smoothing span})$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Introduction	Main results on Ĉ _v	Application to spectral detection	Conclusion
000	00	0000	0

Fourier frequencies set : $V_N = \{0, \frac{1}{N}, \dots, \frac{N-1}{N}\}$

Finite Fourier transform :

$$\boldsymbol{\xi}_{\mathbf{y}}(\nu) = \frac{1}{\sqrt{N}} \sum_{n=1}^{N} \mathbf{y}_n \mathrm{e}^{-\mathrm{i} 2\pi \nu (n-1)}$$

Smoothed periodogram estimator of the spectral density matrix :

$$\hat{\mathbf{S}}_{\mathbf{y}}(\nu) = \frac{1}{B+1} \sum_{b=-B/2}^{B/2} \boldsymbol{\xi}_{\mathbf{y}} \left(\nu + \frac{b}{N}\right) \boldsymbol{\xi}_{\mathbf{y}} \left(\nu + \frac{b}{N}\right)^* \quad (B: \text{smoothing span})$$

Estimator of the spectral coherency matrix :

$$\hat{\mathbf{C}}_{\mathbf{y}}(\nu) = \operatorname{diag}(\hat{\mathbf{S}}_{\mathbf{y}}(\nu))^{-\frac{1}{2}} \hat{\mathbf{S}}_{\mathbf{y}}(\nu) \operatorname{diag}(\hat{\mathbf{S}}_{\mathbf{y}}(\nu))^{-\frac{1}{2}}$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

	Main results on Ĉ _y	Application to spectral detection	Conclusion
000	0	0000	
Main result o	n Ĉ _v		

High dimensional regime : consider B := B(N), M := M(N) such that

$$M, B, N \xrightarrow{N \to \infty} +\infty, \quad \frac{B}{N} \xrightarrow{N \to \infty} 0, \quad \frac{M}{B} \xrightarrow{N \to \infty} c \in (0, 1)$$

(ロ)、(型)、(E)、(E)、 E) の(()

	Main results on Ĉ _v	Application to spectral detection	Conclusion
000	•0	0000	

Main result on \hat{C}_y

High dimensional regime : consider B := B(N), M := M(N) such that

$$M, B, N \xrightarrow{N \to \infty} +\infty, \quad \frac{B}{N} \xrightarrow{N \to \infty} 0, \quad \frac{M}{B} \xrightarrow{N \to \infty} c \in (0, 1)$$

Theorem - Wishart approximation of \hat{C}_y

Under proper technical assumptions on the signal and noise, there exists a $M \times (B+1)$ random matrix $X(\nu)$ with i.i.d. $\mathcal{N}_{\mathbb{C}}(0,1)$ entries such that

$$\max_{\nu \in \mathcal{V}_{\mathcal{N}}} \left\| \hat{\mathbf{C}}_{\mathbf{y}}(\nu) - \Xi(\nu)^{\frac{1}{2}} \frac{\mathbf{X}(\nu) \mathbf{X}(\nu)^{*}}{B+1} \Xi(\nu)^{\frac{1}{2}} \right\| \xrightarrow[\mathcal{N} \to \infty]{a.s.} 0$$
(1)

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

where
$$\Xi(\nu) = \underbrace{\mathbf{S}_{\mathbf{v}}(\nu)^{-\frac{1}{2}} \mathbf{H}(\nu) \mathbf{H}(\nu)^* \mathbf{S}_{\mathbf{v}}(\nu)^{-\frac{1}{2}}}_{\text{rank } K < M} + \mathbf{I}_M \text{ and } \mathbf{H}(\nu) := \sum_{k=0}^{+\infty} \mathbf{H}_k e^{-i2\pi\nu k}$$

Main results on Ĉ _v	Application to spectral detection	Conclusion
•0		

Main result on \hat{C}_y

High dimensional regime : consider B := B(N), M := M(N) such that

$$M, B, N \xrightarrow{N \to \infty} +\infty, \quad \frac{B}{N} \xrightarrow{N \to \infty} 0, \quad \frac{M}{B} \xrightarrow{N \to \infty} c \in (0, 1)$$

Theorem - Wishart approximation of \hat{C}_y

Under proper technical assumptions on the signal and noise, there exists a $M \times (B+1)$ random matrix $X(\nu)$ with i.i.d. $\mathcal{N}_{\mathbb{C}}(0,1)$ entries such that

$$\max_{\nu \in \mathcal{V}_N} \left\| \hat{\mathbf{C}}_{\mathbf{y}}(\nu) - \mathbf{\Xi}(\nu)^{\frac{1}{2}} \frac{\mathbf{X}(\nu) \mathbf{X}(\nu)^*}{B+1} \mathbf{\Xi}(\nu)^{\frac{1}{2}} \right\| \xrightarrow[N \to \infty]{a.s.} 0$$
(1)

where
$$\Xi(\nu) = \underbrace{\mathbf{S}_{\mathbf{v}}(\nu)^{-\frac{1}{2}}\mathbf{H}(\nu)\mathbf{H}(\nu)^*\mathbf{S}_{\mathbf{v}}(\nu)^{-\frac{1}{2}}}_{\operatorname{rank} K < M} + \mathbf{I}_M \text{ and } \mathbf{H}(\nu) := \sum_{k=0}^{+\infty} \mathbf{H}_k e^{-i2\pi\nu k}$$

Key idea :

- $\Xi(\nu)$ fixed rank K perturbation of the identity matrix. This is not the case with temporal approaches.
- first order behaviour of $\Xi(\nu)^{\frac{1}{2}} \frac{\mathbf{X}(\nu)\mathbf{X}(\nu)^{*}}{B+1} \Xi(\nu)^{\frac{1}{2}}$ known.

Introduction	Main results on Ĉ _v	Application to spectral detection	Conclusion
	00		

Simulation in the pure noise case (K = 0)

- K = 0 ($y_n = v_n$ as MA(1)), M = 100, B = 200, N = 4000
- asymptotically, eigenvalues of $\hat{\bf C}_{\bf y}(\nu)\in [(1-\sqrt{c})^2,(1+\sqrt{c})^2]$ (Marchenko & Pastur, 1967)
- good fit even for small dimensions (20 realisations)

э

Introduction	Main results on Ĉ _y	Application to spectral detection	Conclusion
000	00	•000	O
Application - Spec	ctral behaviour of \hat{C}_y		

 $\text{Recall } \boldsymbol{\Xi}(\nu) = \boldsymbol{\mathsf{S}}_{\boldsymbol{\mathsf{v}}}(\nu)^{-\frac{1}{2}} \boldsymbol{\mathsf{H}}(\nu) \boldsymbol{\mathsf{H}}(\nu)^* \boldsymbol{\mathsf{S}}_{\boldsymbol{\mathsf{v}}}(\nu)^{-\frac{1}{2}} + \boldsymbol{\mathsf{I}}_M \in \mathbb{C}^{M \times M}, \text{ rank } \boldsymbol{\mathsf{K}}.$

Main results on Ĉ _y	Application to spectral detection	Conclusion
	●000	

Application - Spectral behaviour of \hat{C}_{y}

Recall $\Xi(\nu) = \mathbf{S}_{\mathbf{v}}(\nu)^{-\frac{1}{2}} \mathbf{H}(\nu) \mathbf{H}(\nu)^* \mathbf{S}_{\mathbf{v}}(\nu)^{-\frac{1}{2}} + \mathbf{I}_M \in \mathbb{C}^{M \times M}$, rank K. Define $\nu_N^* \in \mathcal{V}_N$ such that :

$$\boldsymbol{\nu}_{N}^{*} \in \operatorname*{argmax}_{\boldsymbol{\nu} \in \mathcal{V}_{N}} \lambda_{1} \left(\mathbf{S}_{\mathbf{v}}(\boldsymbol{\nu})^{-\frac{1}{2}} \mathbf{H}(\boldsymbol{\nu}) \mathbf{H}(\boldsymbol{\nu})^{*} \mathbf{S}_{\mathbf{v}}(\boldsymbol{\nu})^{-\frac{1}{2}} \right)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

	Main results on Ĉ _v	Application to spectral detection	Conclusion
000	00	●000	0

Application - Spectral behaviour of \hat{C}_v

Recall $\Xi(\nu) = \mathbf{S}_{\mathbf{v}}(\nu)^{-\frac{1}{2}} \mathbf{H}(\nu) \mathbf{H}(\nu)^* \mathbf{S}_{\mathbf{v}}(\nu)^{-\frac{1}{2}} + \mathbf{I}_M \in \mathbb{C}^{M \times M}$, rank K. Define $\nu_N^* \in \mathcal{V}_N$ such that :

$$\boldsymbol{\nu}_N^* \in \operatorname*{argmax}_{\boldsymbol{\nu} \in \mathcal{V}_N} \lambda_1 \left(\mathbf{S}_{\mathbf{v}}(\boldsymbol{\nu})^{-\frac{1}{2}} \mathbf{H}(\boldsymbol{\nu}) \mathbf{H}(\boldsymbol{\nu})^* \mathbf{S}_{\mathbf{v}}(\boldsymbol{\nu})^{-\frac{1}{2}} \right)$$

Assumption - Spike

For all $k \in \{1, \ldots, K\}$, there exists $\gamma_k > 0$ such that

$$\lambda_k \left(\mathsf{S}_{\mathsf{v}}(\nu_N^*)^{-\frac{1}{2}} \mathsf{H}(\nu_N^*) \mathsf{H}(\nu_N^*)^* \mathsf{S}_{\mathsf{v}}(\nu_N^*)^{-\frac{1}{2}} \right) \xrightarrow[N \to \infty]{} \gamma_k$$

	Main results on Ĉ _V	Application to spectral detection	Conclusion
000	00	0000	0

Application - Spectral behaviour of \hat{C}_v

Recall $\Xi(\nu) = \mathbf{S}_{\mathbf{v}}(\nu)^{-\frac{1}{2}} \mathbf{H}(\nu) \mathbf{H}(\nu)^* \mathbf{S}_{\mathbf{v}}(\nu)^{-\frac{1}{2}} + \mathbf{I}_M \in \mathbb{C}^{M \times M}$, rank K. Define $\nu_N^* \in \mathcal{V}_N$ such that :

$$\boldsymbol{\nu}_N^* \in \operatorname*{argmax}_{\boldsymbol{\nu} \in \mathcal{V}_N} \lambda_1 \left(\mathbf{S}_{\mathbf{v}}(\boldsymbol{\nu})^{-\frac{1}{2}} \mathbf{H}(\boldsymbol{\nu}) \mathbf{H}(\boldsymbol{\nu})^* \mathbf{S}_{\mathbf{v}}(\boldsymbol{\nu})^{-\frac{1}{2}} \right)$$

Assumption - Spike

For all $k \in \{1, \ldots, K\}$, there exists $\gamma_k > 0$ such that

$$\lambda_k \left(\mathsf{S}_{\mathsf{v}}(\nu_N^*)^{-\frac{1}{2}} \mathsf{H}(\nu_N^*) \mathsf{H}(\nu_N^*)^* \mathsf{S}_{\mathsf{v}}(\nu_N^*)^{-\frac{1}{2}} \right) \xrightarrow[N \to \infty]{} \gamma_k$$

Corollary - Behaviour of the spectrum of $\hat{C}_{y}(\nu)$

Under proper technical assumptions, for all $k = 1, \ldots, K$ and all $\nu \in \mathcal{V}_N$,

$$\lambda_k \left(\hat{\mathbf{C}}_{\mathbf{y}}(\nu_N^*) \right) \xrightarrow[N \to \infty]{a.s.} \begin{cases} \frac{(\gamma_k + 1)(\gamma_k + c)}{\gamma_k} > (1 + \sqrt{c})^2 & \text{if } \gamma_k > \sqrt{c} \\ (1 + \sqrt{c})^2 & \text{if } \gamma_k \le \sqrt{c} \end{cases}$$

whereas

$$\lambda_{K+1}\left(\hat{\mathbf{C}}_{\mathbf{y}}(\nu_{N}^{*})\right) \xrightarrow[N \to \infty]{a.s.} (1 + \sqrt{c})^{2}$$

Introduction	Main results on Ĉ _v	Application to spectral detection	Conclusion
		0000	

Application - Spectral behaviour of \hat{C}_{y} - Simulation

- rank one signal ($h(\nu)$ vector) + M-dimensional noise MA(1) process.
- K=1, same M = 100, B = 200, N = 4000, $c = 0.5 \implies \sqrt{c} \approx 0.7$
- separation starting at $SNR := \gamma_1 = \sqrt{c} \implies$ detection for low frequencies

Introduction	Main results on Ĉ _v	Application to spectral detection	Conclusion
		0000	

Application - Spectral behaviour of \hat{C}_{y} - Simulation

- rank one signal ($h(\nu)$ vector) + M-dimensional noise MA(1) process.
- K=1, same M = 100, B = 200, N = 4000, $c = 0.5 \implies \sqrt{c} \approx 0.7$
- separation starting at $SNR := \gamma_1 = \sqrt{c} \implies$ detection for low frequencies

Introduction	Main results on Ĉ _v	Application to spectral detection	Conclusion
		0000	

Application - Spectral behaviour of \hat{C}_{y} - Simulation

- rank one signal ($h(\nu)$ vector) + M-dimensional noise MA(1) process.
- K=1, same M = 100, B = 200, N = 4000, $c = 0.5 \implies \sqrt{c} \approx 0.7$
- separation starting at $SNR := \gamma_1 = \sqrt{c} \implies$ detection for low frequencies

Introduction	Main results on Ĉ _y	Application to spectral detection	Conclusion
000	00	00●0	O

Application - Simulation - Varying parameters

- M = 20, B = 40, N = 4000, c = 0.5, ma parameter = 0.6, medium SNR.
- as $\frac{B}{N} \rightarrow 0$, the finite sample results are closer to the asymptotics

FIGURE – B/N = 0.5

FIGURE – B/N = 0.1 FIGURE – B/N = 0.01

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	Main results on Ĉ _y	Application to spectral detection	Conclusion
000	00	000●	O
Application - Spec	tral detection testing		

$$\mathcal{H}_0: \mathbf{y}_n = \mathbf{v}_n \quad vs \quad \mathcal{H}_1: \mathbf{y}_n = \mathbf{u}_n + \mathbf{v}_n$$

Introduction	Main results on Ĉ _v	Application to spectral detection	Conclusion
000	00	0000	
Application - Sp	ectral detection te	sting	

$$\mathcal{H}_0: \mathbf{y}_n = \mathbf{v}_n \quad vs \quad \mathcal{H}_1: \mathbf{y}_n = \mathbf{u}_n + \mathbf{v}_n$$

New frequency domain detection algorithm

Consider, for some threshold $\epsilon > 0$ the following procedure :

 $\left\{ \begin{array}{ll} \lambda_1(\hat{\mathbf{C}}_{\mathbf{y}}(\nu_N^*)) < (1+\sqrt{c})^2 + \epsilon & \text{absence of u is decided} \\ \lambda_1(\hat{\mathbf{C}}_{\mathbf{y}}(\nu_N^*)) > (1+\sqrt{c})^2 + \epsilon & \text{presence of u is decided} \end{array} \right.$

This leads to define the test statistics :

$$\mathcal{T}_{\epsilon} = \mathbb{1}_{\left((1+\sqrt{c})^2+\epsilon,+\infty
ight)}\left(\max_{
u\in\mathcal{V}_{\mathcal{N}}}\left\|\hat{\mathsf{C}}_{\mathsf{y}}(
u)
ight\|
ight)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction	Main results on Ĉ _V	Application to spectral detection	Conclusion
000	00	0000	
Application -	Spectral detection te	sting	

$$\mathcal{H}_0: \mathbf{y}_n = \mathbf{v}_n \quad vs \quad \mathcal{H}_1: \mathbf{y}_n = \mathbf{u}_n + \mathbf{v}_n$$

New frequency domain detection algorithm

Consider, for some threshold $\epsilon > 0$ the following procedure :

 $\left\{ \begin{array}{ll} \lambda_1(\hat{\mathbf{C}}_{\mathbf{y}}(\nu_N^*)) < (1+\sqrt{c})^2 + \epsilon & \text{absence of u is decided} \\ \lambda_1(\hat{\mathbf{C}}_{\mathbf{y}}(\nu_N^*)) > (1+\sqrt{c})^2 + \epsilon & \text{presence of u is decided} \end{array} \right.$

This leads to define the test statistics :

$$\mathcal{T}_{\epsilon} = \mathbb{1}_{\left((1+\sqrt{c})^2+\epsilon,+\infty
ight)}\left(\max_{
u\in\mathcal{V}_{\mathcal{N}}}\left\|\hat{\mathsf{C}}_{\mathsf{y}}(
u)
ight\|
ight)$$

Theorem - Spectral detection testing

Under proper assumptions, the previous test is consistent iif $\gamma_1 > \sqrt{c}$ and ϵ small enough.

Introduction	Main results on Ĉ _y 00	Application to spectral detection	Conclusion
Conclusion			

• In the high dimensional regime, \hat{C}_y is approximately a Wishart random matrix with covariance matrix as finite rank perturbation of the identity matrix : spike model

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Introduction	Main results on Ĉ _V	Application to spectral detection	Conclusion
			•
Conclusion			

• In the high dimensional regime, $\hat{\mathbf{C}}_{\mathbf{y}}$ is approximately a Wishart random matrix with covariance matrix as finite rank perturbation of the identity matrix : spike model

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

• Well known results provide first order behaviour of its eigenvalues

Introduction 000	Main results on Ĉ _y 00	Application to spectral detection	Conclusion
Conclusion			

- In the high dimensional regime, $\hat{\mathbf{C}}_{\mathbf{y}}$ is approximately a Wishart random matrix with covariance matrix as finite rank perturbation of the identity matrix : spike model
- Well known results provide first order behaviour of its eigenvalues
- \bullet Our detection algorithm is based on a phase transition phenomenon of the largest eigenvalues of $\hat{C}_y(\nu)$:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction 000	Main results on Ĉ _y OO	Application to spectral detection	Conclusion
Conclusion			

- In the high dimensional regime, $\hat{\mathbf{C}}_{\mathbf{y}}$ is approximately a Wishart random matrix with covariance matrix as finite rank perturbation of the identity matrix : spike model
- Well known results provide first order behaviour of its eigenvalues
- Our detection algorithm is based on a phase transition phenomenon of the largest eigenvalues of $\hat{\bf C}_{\bf v}(\nu)$:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- ullet weak energy signals \implies eigenvalue absorbed in the noise bulk
- $\bullet\,$ high energy signals $\implies\,$ eigenvalue separated from the noise bulk