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Introduction - Setting

M–dimensional complex time series (yn)n∈Z modeled as

yn =
+∞∑
k=0

Hkεn−k︸ ︷︷ ︸
=un

+vn ∈ CM

(vn)n∈Z additive noise stationary complex Gaussian time series
components time series (v1,n)n ∈ Z, . . . , (vM,n)n ∈ Z are mutually independent.
(un)n∈Z useful signal : output of causal and stable M × K MIMO filter driven by
a white noise (εn)n∈Z ∼ NCK (0, IK )
Denote (Sy,Cy) the spectral (density, coherency) matrix of (yn)n

Frequency domain detection hypothesis test - Sy

H0 : Sy(ν) = diag(Sy(ν)) = Sv(ν) (noise only) vs
H1 : Sy(ν) = H(ν)H(ν)∗ + Sv(ν) 6= diag(Sy(ν)) (signal+noise)
(H(ν) is the Fourier transform of (Hk )k )

With Cy(ν) := diag(Sy(ν))−
1
2 Sy(ν)diag(Sy(ν))−

1
2

Frequency domain detection hypothesis test - Cy

H0 : Cy = IM (pure noise) vs H1 : Cy 6= IM (signal + noise). Use frequency domain
estimators of Cy to test if un = 0.
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Introduction - Signal detection context

High dimensional regime : K fixed � M,N → +∞

Relevant large dimensional regime in econometrics

late 90’ : Generalized dynamic linear factor models

other underlying assumptions are not relevant in our context

Relevant large dimensional regime in array processing

finite K ×O(1) signal eigenvalues vs M ×O(1) noise eigenvalues

SNR ρ = E‖un‖2

E‖vn‖2 = O( 1
M

) is of special interest.

Important existing work : so-called spiked model, static / narrowband models
(additive noise is temporally and spatially white and signal is un = H0εn)

Considerable work still needed for dynamic / wideband models

Temporal approaches also possible, but frequency ones turns out to be simpler.
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Introduction - Notations & Smoothed periodogram estimator

Fourier frequencies set : VN = {0, 1
N
, . . . , N−1

N
}

Finite Fourier transform :

ξy(ν) =
1
√
N

N∑
n=1

yne
−i2πν(n−1)

Smoothed periodogram estimator of the spectral density matrix :

Ŝy(ν) =
1

B + 1

B/2∑
b=−B/2

ξy

(
ν +

b

N

)
ξy

(
ν +

b

N

)∗
(B : smoothing span)

Estimator of the spectral coherency matrix :

Ĉy(ν) = diag(Ŝy(ν))−
1
2 Ŝy(ν)diag(Ŝy(ν))−

1
2
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Main result on Ĉy

High dimensional regime : consider B := B(N), M := M(N) such that

M,B,N
N→∞−−−−→ +∞,

B

N

N→∞−−−−→ 0,
M

B

N→∞−−−−→ c ∈ (0, 1)

Theorem - Wishart approximation of Ĉy

Under proper technical assumptions on the signal and noise, there exists a
M × (B + 1) random matrix X(ν) with i.i.d. NC(0, 1) entries such that

max
ν∈VN

∥∥∥∥Ĉy(ν)− Ξ(ν)
1
2

X(ν)X(ν)∗

B + 1
Ξ(ν)

1
2

∥∥∥∥ a.s.−−−−→
N→∞

0 (1)

where Ξ(ν) = Sv(ν)−
1
2 H(ν)H(ν)∗Sv(ν)−

1
2︸ ︷︷ ︸

rank K<M

+IM and H(ν) :=
∑+∞

k=0 Hke
−i2πνk

Key idea :

Ξ(ν) fixed rank K perturbation of the identity matrix. This is not the case with
temporal approaches.

first order behaviour of Ξ(ν)
1
2

X(ν)X(ν)∗

B+1
Ξ(ν)

1
2 known.
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Simulation in the pure noise case (K = 0)

K = 0 (yn = vn as MA(1)), M = 100, B = 200, N = 4000

asymptotically, eigenvalues of Ĉy(ν) ∈ [(1−
√
c)2, (1 +

√
c)2] (Marchenko &

Pastur, 1967)

good fit even for small dimensions (20 realisations)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

Marchenko-Pastur, c=0.50
(1 c )2, (1 + c )2

=0
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Application - Spectral behaviour of Ĉy

Recall Ξ(ν) = Sv(ν)−
1
2 H(ν)H(ν)∗Sv(ν)−

1
2 + IM ∈ CM×M , rank K.

Define ν∗N ∈ VN such that :

ν∗N ∈ argmax
ν∈VN

λ1

(
Sv(ν)−

1
2 H(ν)H(ν)∗Sv(ν)−

1
2

)

Assumption - Spike

For all k ∈ {1, . . . ,K}, there exists γk > 0 such that

λk

(
Sv(ν∗N)−

1
2 H(ν∗N)H(ν∗N)∗Sv(ν∗N)−

1
2

)
−−−−→
N→∞

γk

Corollary - Behaviour of the spectrum of Ĉy(ν)

Under proper technical assumptions, for all k = 1, . . . ,K and all ν ∈ VN ,

λk

(
Ĉy(ν∗N)

)
a.s.−−−−→

N→∞

{
(γk+1)(γk+c)

γk
> (1 +

√
c)2 if γk >

√
c

(1 +
√
c)2 if γk ≤

√
c

whereas
λK+1

(
Ĉy(ν∗N)

)
a.s.−−−−→

N→∞

(
1 +
√
c
)2
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Application - Spectral behaviour of Ĉy - Simulation

rank one signal (h(ν) vector) + M–dimensional noise MA(1) process.
K=1, same M = 100, B = 200, N = 4000, c = 0.5 =⇒

√
c ≈ 0.7

separation starting at SNR := γ1 =
√
c =⇒ detection for low frequencies

0.4 0.2 0.0 0.2 0.4

0

1

2

3

4

5

6 ||h( )||2
sv( )/M

0.4 0.2 0.0 0.2 0.4

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75 1( )
M/B

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.0

0.2

0.4

0.6

0.8
Marchenko-Pastur, c=0.50
SNR=0.00, =0
(1 + c )2

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Marchenko-Pastur, c=0.50
SNR=3.73, =0
(1 + c )2
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Application - Spectral behaviour of Ĉy - Simulation

rank one signal (h(ν) vector) + M–dimensional noise MA(1) process.
K=1, same M = 100, B = 200, N = 4000, c = 0.5 =⇒

√
c ≈ 0.7

separation starting at SNR := γ1 =
√
c =⇒ detection for low frequencies
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Application - Simulation - Varying parameters

M = 20,B = 40,N = 4000, c = 0.5, ma parameter = 0.6, medium SNR.

as B
N
→ 0, the finite sample results are closer to the asymptotics
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Application - Spectral detection testing

H0 : yn = vn vs H1 : yn = un + vn

New frequency domain detection algorithm

Consider, for some threshold ε > 0 the following procedure :{
λ1(Ĉy(ν∗N)) < (1 +

√
c)2 + ε absence of u is decided

λ1(Ĉy(ν∗N)) > (1 +
√
c)2 + ε presence of u is decided

This leads to define the test statistics :

Tε = 1((1+
√

c)2+ε,+∞)

(
max
ν∈VN

∥∥∥Ĉy(ν)
∥∥∥)

Theorem - Spectral detection testing

Under proper assumptions, the previous test is consistent iif γ1 >
√
c and ε small

enough.
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Conclusion

Contributions :

In the high dimensional regime, Ĉy is approximately a Wishart random matrix
with covariance matrix as finite rank perturbation of the identity matrix : spike
model

Well known results provide first order behaviour of its eigenvalues

Our detection algorithm is based on a phase transition phenomenon of the largest

eigenvalues of Ĉy(ν) :
weak energy signals =⇒ eigenvalue absorbed in the noise bulk
high energy signals =⇒ eigenvalue separated from the noise bulk
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In the high dimensional regime, Ĉy is approximately a Wishart random matrix
with covariance matrix as finite rank perturbation of the identity matrix : spike
model

Well known results provide first order behaviour of its eigenvalues

Our detection algorithm is based on a phase transition phenomenon of the largest

eigenvalues of Ĉy(ν) :
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