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o (up)nez useful signal : output of causal and stable M x K MIMO filter driven by
a white noise (€n)ncz ~ Nk (0, k)

o Denote (Sy, Cy) the spectral (density, coherency) matrix of (yn)n

Frequency domain detection hypothesis test - Sy

Ho : Sy(v) = diag(Sy(r)) = Sv(v) (noise only) vs
Hi : Sy(v) = H(v)H(v)* + Sy (v) # diag(Sy(v)) (signal+noise)
(H(v) is the Fourier transform of (Hy)x)

With Cy(v) = diag(Sy(v))~ 2 Sy (v)diag(Sy(v)) 2

Frequency domain detection hypothesis test - Cy

Ho : Cy = Iy (pure noise) vs H;y : Cy # Iy (signal + noise). Use frequency domain
estimators of Cy to test if u, = 0.
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@ Important existing work : so-called spiked model, static / narrowband models
(additive noise is temporally and spatially white and signal is u, = Hoen)

o Considerable work still needed for dynamic / wideband models

o Temporal approaches also possible, but frequency ones turns out to be simpler.
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Introduction - Notations & Smoothed periodogram estimator

Fourier frequencies set : Vy = {0, %, ces N,gl}

Finite Fourier transform :

N
_ 1 —i2wv(n—1)
gy(y) = VN ; Yn€

Smoothed periodogram estimator of the spectral density matrix :
N B/2 b\ *
Sy(v) = b__ZB/2§ ( ) &y (V + N) (B : smoothing span)

Estimator of the spectral coherency matrix :

€,(v) = diag(8y (1))~ 28y (v)diag($y(v)) 2



Main results on Cy
[ Je]

N

Main result on C,

High dimensional regime : consider B := B(N), M := M(N) such that

B M
M,B,N Y22 1, N""’—"‘Ko, E“"’—"">ce(o,1)



Main results on Cy
[ Je]

N

Main result on C,

High dimensional regime : consider B := B(N), M := M(N) such that

B M
M,B,N Y22 1, NAH—OOW’ E“"’—"">ce(o,1)

Theorem - Wishart approximation of éy

Under proper technical assumptions on the signal and noise, there exists a
M X (B + 1) random matrix X(v) with i.i.d. Nc(0, 1) entries such that

&(v) - =)} LS

max

= 1
= 2
vEVy (V)

2 () (1)
N— oo

where (1) = Sy(1) " ZH@)H(1)*Su(v) "2 +ly and H(v) := /75 Hye 270k

rank K<M




Main results on Cy
[ Je]

N

Main result on C,

High dimensional regime : consider B := B(N), M := M(N) such that
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Theorem - Wishart approximation of éy

Under proper technical assumptions on the signal and noise, there exists a
M X (B + 1) random matrix X(v) with i.i.d. Nc(0, 1) entries such that

max ||€y(v) — Z(v)? %

= 1
= 2
vEVy (V)

2 () (1)
N— oo

where (1) = Sy(1) " ZH@)H(1)*Su(v) "2 +ly and H(v) := /75 Hye 270k

rank K<M

Key idea :
o =(v) fixed rank K perturbation of the identity matrix. This is not the case with
temporal approaches.

o first order behaviour of E(l/)% %E(V)% known.
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Simulation in the pure noise case (K

o K =0 (yn =vs as MA(1)), M =100, B = 200, N = 4000

o asymptotically, eigenvalues of €y(v) € [(1 — v/©)2, (1 + v/©)?] (Marchenko &
Pastur, 1967)

@ good fit even for small dimensions (20 realisations)

{ Marchenko-Pastur, c=0.50
0.8 .......... (1—\/E)2,(1+\/f)2
j oo

0.0 0.5 1.0 15 2.0 25 3.0 35
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Corollary - Behaviour of the spectrum of €y(v/)

Under proper technical assumptions, for all k =1,..., K and all v € Vy,

. (A (victe) 1 2 f
() g { (e Y e

N—oco

(14 e)? if Y < Ve

whereas

AK+1 (é (VN)) (1 + \f)
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Application - Simulation - Varying parameters

e M =20,B =40,N = 4000, c = 0.5, ma parameter = 0.6, medium SNR.

@ as % — 0, the finite sample results are closer to the asymptotics
ol — aew —aew
( “\ — q+ver — a+ver
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Application - Spectral detection testing

Ho:Yn=Vn vs Hi:yn=up+vp

New frequency domain detection algorithm

Consider, for some threshold € > 0 the following procedure :

Al(éy(yl’g)) < (1 ++/c)>+¢ absence of u is decided
Al(éy(y,’(,)) > (1 ++/c)>+¢ presence of u is decided

This leads to define the test statistics :

T = ]l((l+\/2)2+e,+oo (Vr’ge‘a}x Hcy(l/)H)

I
| \

Theorem - Spectral detection testing

Under proper assumptions, the previous test is consistent iif 73 > /c and € small
enough.

A\
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Contributions :

@ In the high dimensional regime, éy is approximately a Wishart random matrix
with covariance matrix as finite rank perturbation of the identity matrix : spike
model

@ Well known results provide first order behaviour of its eigenvalues

@ Our detection algorithm is based on a phase transition phenomenon of the largest

eigenvalues of €y(v) :
o weak energy signals =—> eigenvalue absorbed in the noise bulk
o high energy signals = eigenvalue separated from the noise bulk



	Introduction
	Main results on y
	Application to spectral detection
	Conclusion

