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Big Data Network Challenges

Basic idea: large-scale, massive number of users, computing everywhere...
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Context of the Talk: Gossip-based Algorithms

I Data are often measured distributively over

large networks

I Gossip-based algorithms: solve multi-agent
coordination and optimization problems in a
decentralized manner

I synchronous
I asynchronous

I Key features:

3 built-in fault tolerance to intermittent

computation/communication.

3 self reorganization to automatic failure

correction.

I Vast literature (see e.g.

[NO09, BPC+11, PC06, MBG10, BGPS06,

DKM+10, RN04, JXM14]) Local loss

Total loss 
= sum of local loss
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Problem Statement
The general distributed multi-agent optimization problem has the following syntax:

min
x

f (x) :=
1

n

n∑
i=1

fi (x) s.t. x ∈ X . (1)

I fi : Rd → R is a differentiable function over X .

I Each agent i can compute a local estimate xi (t) = [x(t)]i of the optimal solution

to the problem (at time t), which we refer to as the agent state.

I The constraints can be handled either through the use of the Lagrangian or the

use of a projection on the constraint set.
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The Graph Model

Consider a network of agents described by a connected possibly undirected graph:

I At time t, the network is described by

G(t) = (V, E). Where V = [n] = {1, ..., n}, and

E(t) ⊆ [n]× [n] is the edge set.

I The weighted adjacency matrix A(t) ∈ Rn×n where

[A(t)]ij := Aij(t) = 0 if (j , i) /∈ E(t). The time

varying graph is defined as G(t) := (V, E(t)) with

E := ∪∞t=1E(t). We have the following assumption:

Assumption 1

There exists a scalar η ∈ (0, 1) such that for all t ≥ 1 and i = 1, · · · , n :

I Aij(t) ≥ η if (i , j) ∈ E(t), A(t)1 = 1, A>(t)1 = 1;

I The graph (V,∪B0
`=1E(t + `)) is connected for B0 <∞.
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The Protocol for Trustworthy Agents

I At the tth recursion, trustworthy agents follow a typical gossip-based distributed

projected gradient (DPG) algorithm:

xi (t + 1) = PX

(
x̄i (t)− γ(t)∇fi

(
x̄i (t)

))
.

x̄i (t) =
∑n

j=1 Aij(t)xj(t) .
(2)

for t ≥ 1, where γ(t) > 0 is a diminishing step size. PX denotes the Euclidean

projection onto the set X and ∇fi
(
x̄i (t)

)
is a gradient of the agent i private

function fi (x) at x̄i (t). For convex problems, it was shown in [WWS+18, RNV10]

that the DPG method converges to an optimal solution of (1):

Fact 1

Under Assumption 1. If ‖∇fi (x)‖ ≤ C1 for some C1 and for all x ∈ X , and the step

size satisfies
∑∞

t=1 γ(t) =∞,
∑∞

t=1 γ
2(t) <∞, then for all i , j ∈ V we have

lim
t→∞

f (xi (t)) = f ? and lim
t→∞

‖xi (t)− xj(t)‖ = 0 . (3)

Without attacker, each node will converge and consensus to the global optimum.
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Data Injection Attack from Insiders

I Let V = Vt ∪ Vm, n = |Vt |+ |Vm|.
I Coordinated Attack:

Disguised consensus injection:

xj(t) = α︸︷︷︸
attack target value

+ rj(t)︸︷︷︸
noise to disguise

∀ j ∈ Vm,

where limt→∞ ‖zj(t)‖ → 0.

I (Assumption 2). There exists B1,B2 <∞ such that for all t ≥ 1, (a) the

composite sub-graph (Vt ,∪t+B1
`=t+1E(Vt ; `)) is connected;(b) there exists a pair

i ∈ Vt , j ∈ Vm with (i , j) ∈ E(t) ∪ . . . ∪ E(t + B2 − 1).

Fact 2

Under Assumptions 1 and 2. If ‖∇fi (x)‖ ≤ C2 for some C2 and for all x ∈ X , and γ(t)→ 0,

we have:

lim
t→∞

max
i∈Vt
‖xi (t)−α‖ = 0 . (4)

Attacks succeed: agents will converge and consensus to attackers’ desirable value.
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Attacker Detection and Localization
We define H0 : Vm = ∅ and H1 : Vm 6= ∅ as two scenarios in the network, namely

‘no-attacker’ and ‘attacker is present’. As for the DPG algorithm, we define the

following events to execute these two neighborhood tasks:

Hi
0 : Ni ∩ Vm = ∅; Hi

1 : Ni ∩ Vm 6= ∅. (5)

Hij
0 : j /∈ Vm; Hij

1 : j ∈ Vm. (6)

Hi
0 and Hi

1 as two events of the trustworthy agent i for the neighborhood detection

task, i.e., events Hij
0 and Hij

1 for neighborhood localization task.

Figure: (Left) Different tasks involved in the attack detection scheme. (Right) Each

“trustworthy” agent T performs detection and localization independently, therefore isolating

an attacker A from the network.
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Neighborhood detection with spatial data

I Hi
0 –there is no attacker in Ni , i.e., Vm ∩Ni = ∅;

I Hi
1 –there exists an attacker in Ni , i.e., Vm ∩Ni 6= ∅ .

After running the DPG for K different instances, the detection task corresponds to —

Neighborhood Detection Task:

ϕk
ij :=

∑T
t=0

(
x
k
j (t)− x

k
i (t)

)
, (7)

Di := 1
|Ni |

∑
j∈Ni

(
1
K

∑K
k=1

1>ϕk
ij

d

)2 Hi
0

≶
Hi

1

δI . (8)

where x
k
i (t) = (1/|Ni |)

∑
j∈Ni

x
k
j (t). δI is a pre-designed threshold, and d is the state

dimension of agents.
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Neighborhood localization with spatial data

I Hij
0 –agent j is not an attacker, i.e., j /∈ Vm;

I Hij
1 –agent j is an attacker, i.e., j ∈ Vm.

For the localization task, we compare the state of agent j and agent i to check if the

neighbor agent is an attacker. We propose checking the metric for localization:

Neighborhood Localization Task:

ϕ̃k
ij :=

∑T
t=0

(
x
k
j (t)− x

k
i (t)

)
−ϕk

ii , (9)

Lij :=
(

1
K

∑K
k=1

1>ϕ̃k
ij

d

)2 H
ij
0

≶
Hij

1

εI . (10)
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Tackle this Problem using Convolutional Neural Networks

I Di and Lij are roughly linear functions which fuse the state vector obtained by

node i into a scalar score for classification.

I We propose to apply a CNN system to fuse {xi}j∈Ni for the detection and

localization task.

I We consider the detection and localization process as a classification problem.

I The CNN can be trained in an offline manner by using data collected from the

neighbors of a trustworthy agent i . We train the CNN in an offline manner and

the same CNN can be deployed on each trustworthy agent.

Figure: The structure of CNN.
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Detection and localization via CNN

For ease of exposition, we assume K = 1 and all the agents have M neighbors. Let T

be the number of iterations that the DPG algorithm runs before convergence.

I x̃`
i (t) ∈ R for t = 1, . . . ,T and ` = 1, . . . , d be the `th dimension state vector of

agent i at the tth iteration.

I By putting {x̃`
i (t)}t,` together, we get a state matrix X̃i ∈ RT×d of the ith agent,

X̃i =


x̃1
i (1), . . . , x̃d

i (1)
...

...
...

x̃1
i (T ), . . . , x̃d

i (T )

 ∈ RT×d .

Denote x̃i [`] ∈ RT×1, ` = 1, . . . , d as the `th column vector of X̃i .

I We then construct the neighborhood state matrix associated with the `th

dimension of the ith agent,

Si [`] =
[
x̃i(1)[`], . . . , x̃i(M)[`]

]T ∈ RM×T

I Next we reshape Si [`] into an image Vi [`] ∈ RH×W with height H and width W .

We virtually obtain an image with d channels, i.e.,

Ui = {Vi [1], . . . ,Vi [d ]} ∈ RH×W×d , i = 1, . . . , n.
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Detection and localization via CNN

We employ CNNs to detect and localize the malicious agents, as illustrated in the

following figure.

I The detection is made according to the following rule in (CNND), wherein yi ∈ R.

I The localization is done by using the following rule in (CNNL). We define

zi = [zi,1, · · · , zi,M ] ∈ RM as the output of CNN for localization.

I δII ∈ [0, 1] and εII ∈ [0, 1] are some prescribed threshold.

(CNND) yi
Hi

1

≷
Hi

0

δII ; (CNNL) zi,j
Hij

1

≷
Hij

0

εII
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Simulation Settings

Figure: The Manhattan network topology is considered. We select only node 1 as an attacker,

while all other nodes are trustworthy agents.

We take an example of the least square problem; i.e.,

f k(x) =
∑n

i=1 f
k
i (x) =

∑n
i=1

∣∣(aki )>xk − bk
i

∣∣2 , k = 1, ...,K .

Herein, f ki can be seen as a utility function for instance k, bk
i = (aki )T (x?)k .
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Simulation Settings

I We set E [A(t)] = I − 1
2n
Σ + P+P>

2n
with [Σ]ii = Σn

j=1(Pij + Pji ), where Σ is a

diagonal matrix, Pij = 1
|Ni |

is the probability between agents i and j at time t.

I A trustworthy agent i ∈ Vt is initial by x
k
i , xk(0) ∼ U [0, 1]d .

I An attacker agent j ∈ Vm follow a update rule (4). We set αk ∼ U [−0.5, 0.5]d

and r
k
j (t) ∼ U [−λ̂t , λ̂t ], where λ is the second largest eigenvalue of E[A(t)].

I bk
i = (aki )T (x?)k , where a

k
i ∼ U [0.5, 2.5]d , (x?)k ∼ U [0, 1]d .

I k ∈ [K ] = {1, 2, · · · ,K}, dim ∈ [d ] = {1, 2, · · · , d}.
Among them, K is the numbers of instances and we take d = 3; dim means that

among total d dimensions, how many of which is observed to calculate the metric.
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ROC Curves for SD and CNN

Figure: ROCs performance of TD, SD and CNN methods with d = 1.Left: Detection

performance at the neighboring nodes of the attacker; Right: Localization performance at the

neighboring nodes of the attacker.

Note: This result implies that transient states do provide us more information to

identify the malicious agent.
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ROC Curves for SD and CNN

Figure: ROCs of CNN and SD in different dimensions: where d is the state dimension of

neighbor agents. Left: Detection performance at the neighboring nodes of the attacker; Right:

Localization performance at the neighboring nodes of the attacker.

Note: Increasing K and dim can improve the performance.
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Summary

I In this work, we proposed two defense strategies for the gossip-based DPG

optimization algorithm.

I The first one is a score-based method employing the transient state information

from the agents. It can outperform our previous score-based method which only

considers initial state and steady state information.

I We further adopt the CNN to secure the DPG algorithm. CNN can automatically

learn effective features from original state information without complex

calculations.

I We numerically verify the efficiency of the detector for the optimization algorithm

based on the least square functions.
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Thank You

&&

Question Welcomed!
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