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Introduction

▪ ASR trained on native English performs poorly on non-native English

▪ Primary Factor:  high confusion in posteriors obtained from native acoustic 

model due to unseen accent variations 

▪ Performance of current methods are limited by the availability of data

▪ Proposed Approach: 

▪ With ~2 hours parallel data learn DNN-based pseudo-likelihood correction 

(PLC) mapping

▪ Non-native pseudo-likelihood vector is mapped to match its native counterpart

Introduction
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▪ ASR trained on native English performs poorly on non-native English 

▪ Proposed Approach: 

▪ Use parallel data to learn DNN-based pseudo-likelihood correction (PLC) mappin

Proposed Approach

[1] Daniel Povey et al., “Purely sequence-trained neural networks for ASR based on lattice-free MMI,” in Interspeech, 2016, pp.2751–2755.
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Block Diagram

Acoustic features: 40-d MFCC+ 100d ivector
Native English ASR Model(M):  Nnet3-chain TDNN model trained on Librispeech

Proposed Approach
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Objective Function

Proposed Approach

Mean Squared Error(MSE):

𝑌𝑛: K-d Warped Native pseudo-
likelihood vector

𝑋𝑛

𝑋𝑛: K-d Warped Non-Native pseudo-
likelihood vector
𝑌𝑛 : K-d Estimated pseudo-likelihood vector

𝑌𝑛

𝑁: Total number of training examples  

𝑌𝑛
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Proposed Approach

▪ In ASR decoding process only top few 
state score values per frame contribute 
in obtaining optimal hypothesis [2]

▪ Proposed objective function: 
Considers only top 𝐋 values of pseudo-
likelihood vector 

[2] Dong Yu and Li Deng, Automatic Speech Recognition – A Deep Learning Approach, Springer, 2016
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PLC: Objective Function 1

Proposed Approach

Type equation here.

𝑋𝑛 𝑌𝑛
Top 3 

position 
of 𝑌𝑛

𝑌𝑛 𝑌𝑛
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PLC: Objective Function 2

Proposed Approach

𝑋𝑛 𝑌𝑛 𝑌𝑛

At 𝐋=K ( dimension of pseudo-likelihood vectors), 
both objective functions, reduces to MSE

𝑌𝑛
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Experimental Setup

Experimental Setup

Technique Architecture Details Training/
Adaptation Set

#of Training 
utterance

Test Set #of Test 
utterance

PLC 3-layer DNN, with 4096 
hidden units

Parallel set from iTIMIT
and TIMIT dataset

1636 (~2 hours) iTIMIT, iMob, 
MOZ, VOX

706

Baseline
(WAm)

weights of M fine-tuned on 
the non-native datasets. [3]

Adaptation using m 
dataset

1636 (~2 hours) iTIMIT, iMob, 
MOZ, VOX

706

*m indicates datasets used for adaptation which are iTIMIT, iMob, Common Voice (MOZ), Voxforge (VOX)

▪ iTIMIT: Indian English dataset of 80 speakers collected in our laboratory environment. Each speaker records 2342 
sentences from the TIMIT corpus [4].

[3] Pegah Ghahremani, et al. , “Investigation of Transfer learning for ASR using LF-MMI trained neural networks,” in Automatic Speech Recognition and Understanding Workshop 
(ASRU), 2017, pp. 279–286 
[4] Chiranjeevi Yarra, et al. “Indic TIMIT and Indic English lexicon: A speech database of Indian speakers using TIMIT stimuli and a lexicon from their mispronunciations,” 
accepted in Oriental COCOSDA 2019. 

▪ iMob: 100 hours of Indian English dataset of 827 speakers collected by us through mobile application with the help of 
industry partner. 

▪ Common Voice (MOZ) and Voxforge (VOX) are publicly available datasets from which the Indian English voice 
samples are considered for our experiment.
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Experiment 1

Results

▪ 𝐋 is varied from 1-5183

▪ 5183: dimension of pseudo-likelihood vectors

▪ WER (TIMIT): 12 %

▪ WER (iTIMIT): 31% 

▪ As 𝐋 reduces WER reduces

▪ 𝐋=5183, both objective functions, reduces to 
MSE

▪ At 𝐋=5183 ( all states considered), WER > 
WER(iTIMIT) with M

▪ Best Performance is  obtained for TopL(Y) at 
𝐋=1000 , with WER:  23.9%

▪ Thus PLC shows ~ 7%  improvement 
compared to M for iTIMIT dataset.

Native English ASR Model(M):  Nnet3-chain TDNN model trained 
on Librispeech
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Experiment 2

Results

Comparison of WER for amount of training utterances (Nt)
for different databases. The title of the plot shows the test-set. 
WAm indicates the adapted model using database m. 

▪ Nt varied from 120 min-4 min 

▪ WER least for PLC for unseen 
cases

▪ WER for PLC is the lowest for all  
cases, for Nt <=20 min

▪ PLC is robust to highly 
mismatched recording 
conditions

▪ WAiTIMIT is the least 
generalizable with maximum 
WER for all unseen cases

▪ WER of PLC saturates for Nt > 
60 min for all test sets
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Conclusion & Future Work

▪ DNN based PLC mapping  optimized over top L  values of the pseudo-likelihood 
vector is proposed.

▪ The best performing system trained with ~ 2 hours of data yields 7% 
improvement over native ASR system.

▪ PLC is found robust to highly mismatched recording conditions.

▪ PLC has the least WER compared to other schemes for all test sets with training 
data <=20 min, indicating generalizing capability in low resource conditions. 

▪ In future, we will like to investigate the robustness of PLC for unseen accents and 
on the choice of dataset used. 

Conclusions
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