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Background

Setup:
» Decentralized data/computation
» ();: data distribution of ith worker

Fl(w) = EXNQ;, [f(w7X)]

» Want n workers to collectively minimize

Fw) = =3 Fi(w)

n«
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Background

Setup:
» Decentralized data/computation
» ();: data distribution of ith worker

Fi(w) = Ex~q, [f(w, X))

» Want n workers to collectively minimize

Fw) = %ZFi(w)

Assumption 1: Assumption 2:
> Non-identical data distributions' > Variable amount of work®
e.g.: MNIST with 10 workers, worker 7 only has e.g.: Mini-batch size 10 for stragglers (slow
images of digit i — 1. workers), 100 for fast workers

LJohn C Duchi, Alekh Agarwal, and Martin J Wainwright. “Dual averaging for distributed optimization: Convergence analysis and network
scaling”. In: |EEE Trans. Automat. Contr. (2011), pp. 592-606

2Nuwan Ferdinand et al. “Anytime minibatch: Exploiting stragglers in online distributed optimization”. In: /CLR. New Orleans, 2019
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Consensus optimization through random-walk

Wi, Gi: n-column matrices {

Wit1 = Wi — nGi (decoupled update)
Wit1 = (Wi —nGi) P (consensus update)
[\ —

Jth column is wJ

n columns for n workers

store weights and gradients VF;
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Consensus optimization through random-walk

. n columns for n workers
Wi, Gi: n-column matrices . )
store weights and gradients VF;

4,1, m: neighbours of worker i

~ =1
Wit1 = Wi — nGi (decoupled update) w Lii iy w
Wit1 = (Wi —nGi) P (consensus update) O/>
— Worker i

. . ~ 7717
jth column is w7

_ _ i ” .
W' 4 W' Pyt WPy +w' Py +w™ Py,
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Consensus optimization through random-walk

Wi, Gi: n-column matrices {

Wit1 = Wi — nGi (decoupled update)
Wit1 = (Wi —nGi) P (consensus update)
[\ —

Jjth column is I

» P;; > 0 only if workers 7, j connected
» P - doubly stochastic matrix

> Entries in [P]™ converge to 1 for large m

n columns for n workers

store weights and gradients VF;

j,1, m: neighbours of worker ¢

“’o——"”"
Worker i

m 1

_ _ i ” .
W' 4 W' Pyt WPy +w' Py +w™ Py,

Wr = Wo[P]" - an;ol G, [P]Tik
N——

averaging effect
on gradients
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Assumption 2: Variable amount of work

» g;: ith column of G = avg. gradient of a size b; (> 1) mini-batch
» ();: data distribution of ith worker

b
1 <
z‘—*g V. , X1); X; ~ Q;
g lz‘l - f(w, X1) l

In slides, assume all distributions are equally important ( = n~y; = 1 for the ~; discussed in paper).
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Assumption 2: Variable amount of work

» g;: ith column of G = avg. gradient of a size b; (> 1) mini-batch
» ();: data distribution of ith worker

b

1 <
i—*g V. , X1); X; ~ Q;
g lill f(w, X1) 1~ Q

Assumption 2: Workers complete different amounts of work
» b, i.i.d. across workers and iterations

» b; # b; in general = confidence of g; vary across 4
Wis1 = (Wy —nGr)P

» Columns of (i), treated equally, irrespective of b = Equal weighting

» How should we account for the variability in confidences?

In slides, assume all distributions are equally important ( = n~y; = 1 for the ~; discussed in paper).

(consensus update)
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Our proposal: Treat confident workers better!

» Give a higher weight to confident gradients

» V: diagonal matrix, V;; o b;

Wk+1 = (Wk - nVGk)P

Concerns:
» Columns of W41 pulled towards confident workers

» Will the oscillatory effect hurt convergence?

(Proportional weighting)
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Confirming numerically

» Fashion-MNIST dataset: 10 classes
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» Multinomial logistic regression

» 1-hidden layer neural network

Code available at https://github.com/thadikari/consensus.

» 10 workers for each class

/6\\2

» Simulate stragglers by sampling b;
60 with probability 0.8

b; =
1 with probability 0.2
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https://github.com/thadikari/consensus

Simulation results

Cost function:
» Convex: no activation in the hidden layer

» Non-convex: ReLU in the hidden layer

Consensus:
» Approximate: 10 consensus rounds
» Perfect: All entries in P set to %

Experiments:
» Top: Convex, Perfect consensus
» Middle: Convex, Apprx. consensus

» Bottom: Non-convex, Apprx. consensus
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Theoretical guarantees: Perfect consensus

> Var(V., f(w, X)) < o*: measures local variance within one worker
> VF = Exeq, [V f(w,X)] and VF = 132" Fi(w)

> > JIVE — VF|?* < n?D: measures global variation among all workers
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Theoretical guarantees: Perfect consensus
» Var(V,f(w, X)) < 0% measures local variance within one worker

> VF =Ex0,[Vuf(w, X)] and VF = 13" F(w)

n 1=1

> > IVE — VF||? < n?D: measures global variation among all workers

Main results:
» Proportional weighting converges!

» Faster than Equal weighting if:

2 2 4.2 nz = E[L/b]
n 2
D b < (i) (') pa = Elbe/ (S0, b))
- v N ~~ 4 5% = Var(b; /b)
variation of true gradient noise -~
gradients across workers of one sample statistics of b;
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Visualizing the condition

(a) Large o
9[2] 9[2]
g
g1 clulster —
VE: .
VE,
vF go clulster
‘Y\
VE, VE

(b) Small ¢
o
—

VF

o

g[1]

» gi = Vuf(w,X) for X ~ Q;

» For small o, even b; = 1 enough to accurately estimate V F.

g(1]
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Conclusions/Next steps

» Account for the variability in confidences
» Proposed proportional method

» Sufficient conditions for faster convergence

Planned work
» Proof for approximate consensus.

» Generalize to include b; = 0 case.

Thank you.
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