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Introduction

• Human action recognition (HAR) is to identify 
indoor/outdoor actions that occur in video sequences.

• The key of numerous visual applications

• Video-based surveillance

• Daily living assistant

• Robotic control

• Healthcare & wellness

• and other civil and military apps.

• Some critical challenges

• Viewpoint variation

• Variant motion velocity

• Variety of single action and multi-subject interaction in 
the realistic condition.
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Background

ML-based Human Action Recognition using RGB images

• Pre-processing

• Object detection

• Object localization and segmentation

• And tracking

• Feature engineering

• Feature extraction: SIFT, HOG, and etc.

• Feature selection: filter, wrapper, and etc.

• Model learning (classification)

• Supervised learning: decision tree, support vector machine

• Unsupervised learning: k-means clustering

Limitation: Extremely sensitive to illumination, occlusion, and 
subject appearance.
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Conventional machine learning-based approach

DL-based Human Action Recognition using RGB images

• Deep learning covers the functionalities of feature 
engineering and classification

• Advantages of DL (in comparison with ML)

• Excellent performance on big dataset

• Without expert knowledge of feature engineering

• Some modern backbone CNNs

• VGG-16, VGG-19

• GoogleNet, Inception-v3

• ResNet, DenseNet

Limitation: Performance is mostly vulnerable by environment 
and subject’s stuffs.

Pre-

processing
Deep Learning Model Label

Innovative deep learning-based approach
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Background

DL-based Human Action Recognition using 3D Skeleton Data

• Body and limb key-points based skeleton contains higher-

level context of subject appearance compared with RGB 

• Development and popularity of depth camera

• More accurate than regular camera with depth information

• Pose estimation algorithm integrated inside such depth 
camera like Kinect sensor

• Technical challenges

• Variable scale (subject-vs-camera distance)

• Variable viewpoint (camera setup)

• Intra-class action variation

• Deep learning for 3D action recognition has attracted 
recently.
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State-of-the-art review

• DL architecture

• Recurrent Neural Networks/Long Short-Term Memory

• Convolutional Neural Network

• RNN/LSTM-based HAR approaches

• Bidirectional RNN [5]

• Global context-aware attention LSTM [6] 

• Two-Stream Attention LSTM [7]

• CNN-based HAR approaches

• Skeleton visualization [23]

• PoF2I + inception-v3 [15]

Limitation

• Incapability of fully covering an entire action sequence 

• Lack of concurrently learning spatiotemporal static pose and 
body transition. 

Pre-

processing
Deep Learning Model Label

Innovative deep learning-based approach
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Introduce a CNN with two convolutional streams, namely 
Deep Geometric Pose-Transition Dual-Stream Network 
(DGPoT-2SCNN)

• Concurrently learning spatial static pose and temporal action 
dynamic of an entire sequence.

 The joint relation within a skeleton and the body association 
between two skeletons in consecutive frames are comprehensively 
encapsulated.

The overall action recognition framework with a dual-stream CNN 

for learning geometric static pose and action dynamic. Annotation: 

(1)-geometric feature maps, (2)-feature concatenation, and (3)-

predicted class scores. 

Contribution

• Introduction of an efficient DL-based method for visual-based 
HAR

• Performance benchmark on NTU RGB+D 120 as the largest 
and most challenging dataset of action recognition

• Ablation study with various CNN backbones

• Method comparison in terms of recognition accuracy.

Technical highlights

• Static pose + action dynamic ← 3D geometric features of joint-to-
joint distance

• Calculation and representation of two geometric feature maps

• Design of a dual-stream CNN architecture with pre-trained inception-
v3 for transfer learning

• High compatibility with different pre-trained networks.
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• Deployment of two convolutional streams of pre-trained 
inception-v3

• Two inception-v3 models assembled in parallel

• High-level global pooling features concatenated at the end

• Benefits
• Learning the intrinsic relationships between multiple joints of 

intra-subject and inter-subject skeletons

• Learning the spatial in-frame joint correlations and the 
temporal frame-wise body associations.

• Compatibility with different CNN backbone architectures, such 
as VGG, ResNet, and DenseNet.

The compact view of the dual-stream CNN architecture with the 

convolutional flow initialized by Inception-v3. Annotation: (1)-

convolutional layers, (2)-inception module A, (3)-inception module 

B, (4)-inception module C, and (5)-global average pooling layer. 

Measure the distance metric by means of 

projecting 3D points on three original 

planes

where the general distance in 3D Euclidean space

Note: The triple-value feature is captured for all individual subjects 

and for interactions

Two categories of geometric feature of

• Human pose representation in the spatial domain

• Body transition description in the temporal domain

Note: Two handcrafted geometric feature maps are written by 3D 
matrices of volume 

No. frames
No. features extracted from the 

skeleton data of one frame

Triple-value distance feature
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Dataset – NTU RGB+D 120

• 120 of single actions, human-object interactions, and human-human 
interactions

• 114,480 video sequences of 106 subjects collected via 32 location 
configurations

Evaluation protocols

• Cross-subject (53/106 subjects for training, remains for testing)

• Cross-setup (16/32 setups for training, remains for testing)

Training parameters

• Stochastic gradient descent with momentum (SGDM) optimizer 

• No. fine-tuning epochs: 20

• Mini-batch size: 64

• Learning rate: 0.01 (dropped 90% after 10 epochs)

Performance is measured by recognition rate (%)

Two experiments are delivered

• Ablation study

• Method comparison

Ablation study

• Single stream with either static pose feature or action dynamic 
feature

• Different CNN backbones used in dual-stream network
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Analysis

• Static pose is more important than action dynamic

• Fusing deep features via dual-stream strategy improve 
recognition rate properly

• Cross-subject is more challenging than cross-setup

• GoogleNet reports the worst accuracy, while Inception-v3 yields 
the best score.

• Outperformance of both state-of-the-art CNNs-based and LSTM-
based approaches*

* The comparison is made with 3D skeleton-based HAR methods
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DGPoT-2SCNN

• Calculation of joint-to-joint distance metric to explain 
the static pose and action dynamic  

• Development of a dual-stream CNN with pre-trained 
Inception-v3 

• Mining intrinsic intra-subject joint relationships and 
inter-subject skeleton associations in the 
spatiotemporal dimension.

• Compatibility of various CNN backbones

• Outperformance of existing LSTM- and CNN-based 
approaches

Limitation

• Sensitive to diverse subject appearance

Future

• Enhancement with more robustly geometric metrics 
for pose description and action transition explanation
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