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Introduction—Super-resolution

Image super-resolution (SR):

transforms low-resolution (LR) images to high-resolution (HR) images J

",
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Introduction—Face hallucination

Face SR VS General image SR:
Face images have their special structural information and prior knowledge
such as :

1. parsing map
2. landmark
3. heatmap

a) landmark  b) parsing map c) heatmaps
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Introduction

Our contributions:
1. We design a FishSRNet to generate features in a variety of resolution
2. We propose a multi-scale channel and spatial attention block (MSAB)
3. We get prior knowledge directly from input LR faces.
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FishSRNet

Existing methods: pre or post-upsampling model, but features in
low-resolution or high-resolution don’t work well

Our method: designs a FishSRNet to generate features in a variety of
resolution
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FishSRNet
Our method: designs a FishSRNet to generate features in a variety of
resolution
g p-sampling module [ convol Bl cont MSAB
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Fish Head Fish Body Fish Tail

FishSRNet

FishSRNet first up-samples the input then down-samples and up-samples
again.

@ up-sampling module (UM)

@ down-sampling module (DM)
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down-sampling module | | up-samplingmodule [ convolution [ concat [T MsaB
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FishSRNet

Feature extraction layer: extracts features from the input

Fy = Feature extraction(ILR),

where Fj 1s the output of the feature extraction layer.
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FishSRNet
down-sampling module | | up-sampling module convolution Bl concat MSAB
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FishSRNet

Fish Head: up-samples features to increase the receptive field and the
resolution of the features

Fy, F5, F3,Fy = Fish Head(Fy),

where F, Fy, F3 are the features from every UM for much richer Varie_m___: fof
the features, F is for deep layer.
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FishSRNet

Fish Head Fish Body Fish Tail

FishSRNet

Fish Body: down-samples features to improve the diversity of resolution
F57F77F97F10:F7:Sh BOdy(F47F17F27F3)7 (3)

where Ff, F7, Fy are the features from every DM for much richer variety
the features, F’ is for deep layer.
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FishSRNet

down-sampling module | up-sampling module 1 convolution [ concat [0 msas
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FishSRNet

Fish Tail: up-samples the feature maps to the same resolution as HR

Ft = Flish Tail(Flo,Fg,F7, F5),

where F; 1s for deep layer.
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FishSRNet

down-sampling module | | up-sampling module [E] convolution [l concat [N MsaB
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FishSRNet
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Reconstruction layer: generates the final output
Isr = Reconstruction(F}),

where Igp 1s the result of our network.
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FishSRNet—Experiment

The effectiveness of FishSRNet

post-upsampling 25.12 0.8705
FishSRNet 25.26 0.8745
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MSAB

Existing methods: ignore the attention mechanism which is proved useful in
general image SR.

Our method: introduces attention mechanism to face SR and constructs a
multi-scale channel and spatial attention block (MSAB).
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MSAB
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[:J convolution (filter size) - concat

Multi-scale convolution: extracts multi-scale information
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Attention

N

T
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convolution (filter size)

fully connected layer

I

pooling (average, variance, max)

@ Channel attention: generates channel mask

@ Spatial attention: generates spatial mask
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MSAB-Experiment

The effectiveness of MSAB

FishSRNet + Resblock 25.26 0.8745
FishSRNet + MSAB  25.39 0.8773
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ParsingNet

Existing methods: the prior knowledge derived from the intermediate results
1s directly affected by the quality of intermediate results.
Our method: gets prior knowledge directly from input LR faces.

Intermediate result Parsing map

a) Other methods ﬁ W B m 6
b) Our method ([} IEEEEEE—ETTTIT— ©
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Overall Framework

LR Parsing map SR
- :

ParsingNet }— e FishSRNet }—>
NS

Overall framework

@ LR denotes the input LR face
@ SR denotes the output of our network
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ParsingNet

LR Parsing map SR
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Overall framework

@ common residual network

@ parsing map: mask matrix with 0 in skin region and 255 in other
components
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Overall Framework—ParsingNet

LR Parsing map SR

ParsingNet J—* e T FishSRNet

Overall framework
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Overall Framework—FishSRNet
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FishSRNet with parsing map

P denotes the parsing map. We concat the paring map at the front of the
FishSRNet and before the Fish Tail.
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ParsingNet—Experiment

The effectiveness of ParsingNet

FishSRNet + MSAB 25.39 0.8773
FishSRNet + MSAB + ParsingNet 25.34 (0.8758

ParsingNet can’t improve PSNR and SSIM.
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ParsingNet—Experiment

\

Illustrations of influences of our different components: (a) LR. (b) The results of
FishSRNet. (c¢) The results of FishSRNet + MSAB . (d) The results of FishSRNet +
MSAB + ParsingNet. (e) Ground truth.

ParsingNet contributes to visual quality.
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Experiment

Quantitative evaluation of various face hallucination methods

PSNR 22.60 23.18 22.60 23.42 24.71 25.08 25.34
SSIM  0.8104 0.8301 0.8164 0.8375 0.8587 0.8670 0.87S58
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Experiment

VDSR

Qualitative comparison of various face hallucination methods
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Experiment

Failure cases

Our method exhibits poor performances when encountering special faces.
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Thanks for your attention!

Any questions?
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