Deep Geometric Knowledge Distillation with Graphs

Carlos Lassance, Myriam Bontonou, Ghouthi Boukli Hacene, Vincent Gripon, Jian Tang, Antonio Ortega

IMT Atlantique
Bretagne-Pays de la Loire École Mines-Télécom

(1) USCUniversityof Southern California

ICASSP 2020

Outline

(1) Define and motivate knowledge distillation;
(2) Introduce the concept of Graph Knowledge Distillation (GKD);
(3) Present empirical evaluation and analysis.

Motivation

Motivation

1T FLOPs for one decision

100M parameters to learn

1024 V100 during 1 day for training

4 TPUs during 1 month for training

Knowledge distillation

Goal

Neural network compression:

- Teacher transfers knowledge to student;
- Student has less parameters than teacher;
- Student decisions consistent with teacher leads to
- Student's accuracy \approx teacher's accuracy;
- Student mimicks the teacher's output;
- Form of pseudo-labeling;
- Uses teacher understanding of classes;

Knowledge distillation

Goal

Neural network compression:

- Teacher transfers knowledge to student;
- Student has less parameters than teacher;
- Student decisions consistent with teacher leads to
- Student's accuracy \approx teacher's accuracy;

Distilling the Knowledge in a Neural Network, Hinton et al., 2014

- Student mimicks the teacher's output;
- Form of pseudo-labeling;
- Uses teacher understanding of classes;

Distillation

- Modern neural networks tend to be very deep;
- Distilling only the output does not guarantee influencing all layers;
- Solution:
- Enforce [student latent space = teacher latent space];
- Drawback: intermediate representation dimensions may not match.

Distillation

- Modern neural networks tend to be very deep;
- Distilling only the output does not guarantee influencing all layers;
- Solution:
- Enforce [student latent space = teacher latent space];
- Drawback: intermediate representation dimensions may not match.

Fitnets, Romero et al., 2015

- Solution: add linear transformations so that dimensions match;
- Drawback: the linear transformations are removed after training, jointly with part of the distilled knowledge.

Distillation

- Modern neural networks tend to be very deep;
- Distilling only the output does not guarantee influencing all layers;
- Solution:
- Enforce [student latent space = teacher latent space];
- Drawback: intermediate representation dimensions may not match.

LIT, Koratana et al., 2019

- Solution: perform the distillation block-wise and ensure that the outputs of each block have the same size;
- Drawback: limits the architecture choice.

Distillation
 IKD vs RKD

Individual Knowledge Distillation (IKD)

- Methods we presented perform IKD;
- Consider each example separately;
- Either need transformations or same size representations.

```
Relational Knowledge Distillation (RKD)
- Formalized in Park et al., 2019.
- Goal: Transfer higher order knowledge to the student, e.g.:
- Distance between pairs of examples;
- Angles between triplets of examples.
```


Distillation
 IKD vs RKD

Individual Knowledge Distillation (IKD)

- Methods we presented perform IKD;
- Consider each example separately;
- Either need transformations or same size representations.

Relational Knowledge Distillation (RKD)

- Formalized in Park et al., 2019.
- Goal: Transfer higher order knowledge to the student, e.g.:
- Distance between pairs of examples;
- Angles between triplets of examples.

Distillation

IKD vs RKD

Training NN with KD

$$
\begin{equation*}
\mathcal{L}=\mathcal{L}_{\text {task }}+\lambda_{\mathrm{KD}} \cdot \mathcal{L}_{\mathrm{KD}} \tag{1}
\end{equation*}
$$

Individual Knowledge Distillation (IKD)

$$
\mathcal{L}_{\text {IND }}=\sum_{\ell \in \Lambda} \sum_{x \in X} \mathcal{L}_{d}\left(x_{S_{\ell}}, x_{T_{\ell}}\right)
$$

Relational Knowledge Distillation (RKD) - distance between

 pairs of examples

Distillation

IKD vs RKD

Training NN with KD

$$
\begin{equation*}
\mathcal{L}=\mathcal{L}_{\text {task }}+\lambda_{\mathrm{KD}} \cdot \mathcal{L}_{\mathrm{KD}} \tag{1}
\end{equation*}
$$

Individual Knowledge Distillation (IKD)

$$
\begin{equation*}
\mathcal{L}_{\mathrm{IKD}}=\sum_{\ell \in \Lambda} \sum_{\mathbf{x} \in X} \mathcal{L}_{d}\left(\mathbf{x}_{S_{\ell}}, \mathbf{x}_{T_{\ell}}\right) \tag{2}
\end{equation*}
$$

Relational Knowledge Distillation (RKD) - distance between

 pairs of examples

Distillation

IKD vs RKD

Training NN with KD

$$
\begin{equation*}
\mathcal{L}=\mathcal{L}_{\text {task }}+\lambda_{\mathrm{KD}} \cdot \mathcal{L}_{\mathrm{KD}} \tag{1}
\end{equation*}
$$

Individual Knowledge Distillation (IKD)

$$
\begin{equation*}
\mathcal{L}_{\mathrm{IKD}}=\sum_{\ell \in \Lambda} \sum_{\mathbf{x} \in X} \mathcal{L}_{d}\left(\mathbf{x}_{S_{\ell}}, \mathbf{x}_{T_{\ell}}\right) \tag{2}
\end{equation*}
$$

Relational Knowledge Distillation (RKD) - distance between pairs of examples

$$
\begin{equation*}
\mathcal{L}_{\mathrm{RKD}-\mathrm{D}}=\sum_{\ell \in \Lambda} \sum_{\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \in X^{2}} \mathcal{L}_{d}\left(\frac{\left\|\mathbf{x}_{S_{\ell}}-\mathbf{x}^{\prime}{S_{\ell}}\right\|_{2}}{\Delta_{S_{\ell}}}, \frac{\left\|\mathbf{x}_{T_{\ell}}-\mathbf{x}^{\prime}{T_{\ell}}\right\|_{2}}{\Delta_{T_{\ell}}}\right) \tag{3}
\end{equation*}
$$

Graph Knowledge Distillation

We propose to use graphs to distillate knowledge:

- Use graphs to represent latent spaces;
- Student should mimick the teacher's graphs;
- Introducing a graph formalism opens research directions:
- Graph Signal Processing (GSP) analysis of the results;
- Better normalization \rightarrow easier to compare;
- More meaningful relational distances;
- Graph variations:
(1) Task specific graphs (inter/intra-class graphs);
(2) Localized graphs (k-neighbors graphs);
(3) Smoothed graphs (adjacency matrix to power p).
- Form of RKD.
- Concurrently proposed by Liu et al., 2019; Lee et al., 2019; and this work.

Graph Knowledge Distillation

We propose to use graphs to distillate knowledge:

- Use graphs to represent latent spaces;
- Student should mimick the teacher's graphs;
- Introducing a graph formalism opens research directions:
- Graph Signal Processing (GSP) analysis of the results;
- Better normalization \rightarrow easier to compare;
- More meaningful relational distances;
- Graph variations:
(1) Task specific graphs (inter/intra-class graphs);

2 Localized graphs (k-neighbors graphs);
(3) Smoothed graphs (adjacency matrix to power p).

- Form of RKD
- Concurrently proposed by Liu et al., 2019; Lee et al., 2019; and

Graph Knowledge Distillation

We propose to use graphs to distillate knowledge:

- Use graphs to represent latent spaces;
- Student should mimick the teacher's graphs;
- Introducing a graph formalism opens research directions:
- Graph Signal Processing (GSP) analysis of the results;
- Better normalization \rightarrow easier to compare;
- More meaningful relational distances;
- Graph variations:
(1) Task specific graphs (inter/intra-class graphs);

2 Localized graphs (k-neighbors graphs);
(3) Smoothed graphs (adjacency matrix to power p).

- Form of RKD.
- Concurrently proposed by Liu et al., 2019; Lee et al., 2019; and this work.

Graph representation of latent spaces

intermediate representations

Graph representation of latent spaces

intermediate representations

Graph representation of latent spaces

intermediate representations

Distillation
 RKD vs GKD

Relational Knowledge Distillation (RKD) - distance between pairs of examples

$$
\begin{equation*}
\mathcal{L}_{\mathrm{RKD}-\mathrm{D}}=\sum_{\ell \in \Lambda} \sum_{\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \in X^{2}} \mathcal{L}_{d}\left(\frac{\left\|\mathbf{x}_{S_{\ell}}-\mathbf{x}^{\prime} S_{\ell}\right\|_{2}}{\Delta S_{\ell}}, \frac{\left\|\mathbf{x}_{T_{\ell}}-\mathbf{x}_{T_{\ell}}\right\|_{2}}{\Delta_{T_{\ell}}}\right) \tag{4}
\end{equation*}
$$

Graph Knowledge Distillation (GKD)

$$
\begin{gather*}
\mathcal{L}_{G K D}=\sum_{\ell \in \Lambda} \mathcal{L}_{d}\left(\mathcal{G}_{S_{\ell}}(X), \mathcal{G}_{T_{\ell}}(X)\right) . \tag{5}\\
\mathcal{L}_{G K D}=\sum_{\ell \in \Lambda}\left\|\mathbf{D}_{S_{\ell}}^{-\frac{1}{2}} \mathbf{A}_{S_{\ell}} \mathbf{D}_{S_{\ell}}^{-\frac{1}{2}}-\mathbf{D}_{T_{\ell}}^{-\frac{1}{2}} \mathbf{A}_{T_{\ell}} \mathbf{D}_{T_{\ell}}^{-\frac{1}{2}}\right\|_{2}^{2} . \tag{6}
\end{gather*}
$$

Empirical experiments and analysis

(1) Error rate comparison against RKD-D in CIFAR-10;
(2) Classification consistency;
(3) Graph signal smoothness analysis;
(0) Effect of using task specific graphs.

Neural net architectures

Teacher - WideResnet-28-1

$$
\text { Input - }[3,32,32]
$$

Embedding - [16, 32, 32]
Block 1-[16, 32, 32]
Block 2-[32, 16, 16]
Block 3 - [64]
Block 4 / Classification - [10]

Student - WideResnet-28-0.5

≈ 4 times smaller (parameters and FLOPS) than the teacher
Input - [3, 32, 32]

Embedding - [16, 32, 32]

Block 1 - [8, 32, 32]

Block 2 - $[16,16,16]$
Block 3 - [32]
\downarrow
Block 4 / Classification - [10]

Empirical experiments and analysis

CIFAR-10 error rate

Table: Median error rate and standard deviation on the CIFAR-10 dataset.

Method	CIFAR-10	Relative size
Teacher	$7.27 \%(\pm 0.26)$	100%
Student without KD (Baseline)	$10.34 \%(\pm 0.27)$	27%

Empirical experiments and analysis

CIFAR-10

Table: Median error rate and standard deviation comparison on the CIFAR-10.

Method	CIFAR-10	Relative size
Teacher	$7.27 \%(\pm 0.26)$	100%
Student without KD (baseline)	$10.34 \%(\pm 0.27)$	27%
RKD-D	$10.05 \%(\pm 0.28)$	27%
GKD	$9.71 \%(\pm 0.27)$	27%
GKD (inter-class graph)	$9.31 \%(\pm \mathbf{0 . 2 5)}$	27%

Empirical experiments and analysis

Classification consistency with teacher

Figure: Analysis of the consistency of classification compared to the teacher, across blocks of RKD-D and GKD students.

Empirical experiments and analysis

Graph signal smoothness analysis

Teacher's Fiedler vector
Label binary indicator signal

Figure: Analysis of the smoothness evolution across layers of the RKD and GKD students

Empirical experiments and analysis

Teacher's Fiedler vector
Label binary indicator signal

Figure: Analysis of the smoothness evolution across layers of the RKD and GKD students

Empirical experiments and analysis

Task specific graphs

Figure: Analysis of the effect of task specific graphs. A graph of distinct classes has edges only between nodes of different classes, while same class graphs has edges only between nodes of the same class.

Conclusion

Wrap up

- Graphs can be used as a proxy to the geometry of latent representations in deep neural networks;
- Using graphs for knowledge distillation allows us to improve the performance of compressed student networks;
- We were able to analyze the intermediate representations of our student networks.
- Small gains, could be combined with other approaches;
- More relevant graph distances, such as spectral distance;
- Train the network block-wise instead of end-to-end.

Conclusion

Wrap up

- Graphs can be used as a proxy to the geometry of latent representations in deep neural networks;
- Using graphs for knowledge distillation allows us to improve the performance of compressed student networks;
- We were able to analyze the intermediate representations of our student networks.

Future work

- Small gains, could be combined with other approaches;
- More relevant graph distances, such as spectral distance;
- Train the network block-wise instead of end-to-end.

Thank you for watching this presentation.

I will be happy to answer any questions you have via e-mail:
carlos.rosarkoslassance@imt-atlantique.fr.
Code available at github.com/cadurosar/graph_kd

References

- Hinton et al., 2014, "Distilling the Knowledge in a Neural Network.", NIPS Workshop;
- Romero et al., 2015, "Fitnets:Hints for thin deep nets.", ICLR;
- Koratana, et al., 2019, "LIT: Learned intermediate representation training for model compression.", ICML;
- Park et al., 2019, "Relational knowledge distillation.", CVPR;
- Liu et al., 2019, "Knowledge Distillation via Instance Relationship Graph.", CVPR;
- Lee et al., 2019, "Graph-based Knowledge Distillation by Multi-head Attention Network.", BMVC.

