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@ Define and motivate knowledge distillation;
Q Introduce the concept of Graph Knowledge Distillation (GKD);

© Present empirical evaluation and analysis.
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Motivation
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100M parameters to learn 4 TPUs during 1 month for training
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Knowledge distillation

Neural network compression:

@ Teacher transfers knowledge to student;

o Student has less parameters than teacher;
@ Student decisions consistent with teacher leads to
o Student’s accuracy = teacher's accuracy;
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Knowledge distillation

Neural network compression:
@ Teacher transfers knowledge to student;

o Student has less parameters than teacher;
@ Student decisions consistent with teacher leads to
o Student’s accuracy = teacher's accuracy;

Distilling the Knowledge in a Neural Network, Hinton et al., 2014

o Student mimicks the teacher’s output;

o Form of pseudo-labeling;
o Uses teacher understanding of classes;
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Distillation

Layer/Block-wise distillation

@ Modern neural networks tend to be very deep;

o Distilling only the output does not guarantee influencing all layers;
o Solution:
o Enforce [student latent space = teacher latent space];

@ Drawback: intermediate representation dimensions may not
match.
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Distillation

Layer/Block-wise distillation

@ Modern neural networks tend to be very deep;
o Distilling only the output does not guarantee influencing all layers;

@ Solution:
o Enforce [student latent space = teacher latent space];

@ Drawback: intermediate representation dimensions may not
match.

Fitnets, Romero et al., 2015
@ Solution: add linear transformations so that dimensions match;

@ Drawback: the linear transformations are removed after training,
jointly with part of the distilled knowledge.
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Distillation

Layer/Block-wise distillation

@ Modern neural networks tend to be very deep;
o Distilling only the output does not guarantee influencing all layers;

@ Solution:
o Enforce [student latent space = teacher latent space];

@ Drawback: intermediate representation dimensions may not
match.

LIT, Koratana et al., 2019

@ Solution: perform the distillation block-wise and ensure that the
outputs of each block have the same size;

@ Drawback: limits the architecture choice.
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Distillation
IKD vs RKD

Individual Knowledge Distillation (IKD)

@ Methods we presented perform IKD;

@ Consider each example separately;
o Either need transformations or same size representations.
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Distillation
IKD vs RKD

Individual Knowledge Distillation (IKD)

@ Methods we presented perform IKD;

@ Consider each example separately;

o Either need transformations or same size representations.

Relational Knowledge Distillation (RKD)

@ Formalized in Park et al., 2019.
@ Goal: Transfer higher order knowledge to the student, e.g.:

o Distance between pairs of examples;
o Angles between triplets of examples.
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Distillation
IKD vs RKD

Training NN with KD

L = Liask + Akp - Lk (1)
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Distillation
IKD vs RKD

Training NN with KD

L = Lizsk + Mkp - Lk (1)

Individual Knowledge Distillation (IKD)

Liko =YY Ly(xXs,,xT,) (2)

LeN xeX
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Distillation
IKD vs RKD

Training NN with KD

L = Lizsk + Mkp - Lk (1)

Individual Knowledge Distillation (IKD)

Liko =YY Ly(xXs,,xT,) (2)

LeN xeX

Relational Knowledge Distillation (RKD) - distance between

pairs of examples
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Graph Knowledge Distillation

We propose to use graphs to distillate knowledge:
@ Use graphs to represent latent spaces;
@ Student should mimick the teacher’s graphs;
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Graph Knowledge Distillation

We propose to use graphs to distillate knowledge:
@ Use graphs to represent latent spaces;

@ Student should mimick the teacher’s graphs;
@ Introducing a graph formalism opens research directions:
Graph Signal Processing (GSP) analysis of the results;
Better normalization — easier to compare;
More meaningful relational distances;
Graph variations:

@ Task specific graphs (inter/intra-class graphs);

@ Localized graphs (k-neighbors graphs);

© Smoothed graphs (adjacency matrix to power p).
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Graph Knowledge Distillation

We propose to use graphs to distillate knowledge:
@ Use graphs to represent latent spaces;

@ Student should mimick the teacher’s graphs;

@ Introducing a graph formalism opens research directions:
Graph Signal Processing (GSP) analysis of the results;
Better normalization — easier to compare;

More meaningful relational distances;

Graph variations:
@ Task specific graphs (inter/intra-class graphs);
@ Localized graphs (k-neighbors graphs);
© Smoothed graphs (adjacency matrix to power p).

@ Form of RKD.

@ Concurrently proposed by Liu et al., 2019; Lee et al., 2019; and
this work.
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Graph representation of latent spaces

intermediate
representations
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Graph representation of latent spaces
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Distillation
RKD vs GKD

Relational Knowledge Distillation (RKD) - distance between
pairs of examples

_ / _ /
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Graph Knowledge Distillation (GKD)
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Empirical experiments and analysis

Outline

@ Error rate comparison against RKD-D in CIFAR-10;

©Q Classification consistency;

© Graph signal smoothness analysis;

© Effect of using task specific graphs.
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Neural net architectures

Teacher - WideResnet-28-1 Student - WideResnet-28-0.5

~ 4 times smaller (parameters
and FLOPS) than the teacher
Input - [3,32,32] Input - [3,32,32]
v v
Embedding - [16, 32, 32] Embedding - [16, 32, 32]
v v
Block 1 - [16, 32, 32] Block 1 - [8,32,32]
v v
Block 2 - [32, 16, 16] Block 2 - [16, 16, 16]
v v
Block 3 - [64] Block 3 - [32]
v Y
Block 4 / Classification - [10] Block 4 / Classification - [10]
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Empirical experiments and analysis

CIFAR-10 error rate

Table: Median error rate and standard deviation on the CIFAR-10 dataset.

Method CIFAR-10 Relative size
Teacher 7.27% (£ 0.26) 100%
Student without KD (Baseline) | 10.34% (+ 0.27) 27%
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Empirical experiments and analysis
CIFAR-10

Table: Median error rate and standard deviation comparison on the CIFAR-10.

Method CIFAR-10 Relative size
Teacher 7.27% (£ 0.26) 100%
Student without KD (baseline) | 10.34% (4 0.27) 27%
RKD-D 10.05% (& 0.28) 27%
GKD 9.71% (£ 0.27) 27%
GKD (inter-class graph) 9.31% (£ 0.25) 27%
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Empirical experiments and analysis

Classification consistency with teacher
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Figure: Analysis of the consistency of classification compared to the teacher,
across blocks of RKD-D and GKD students.
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Empirical experiments and analysis

Graph signal smoothness analysis

Teacher’s Fiedler vector
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Figure: Analysis of the smoothness evolution across layers of the RKD and
GKD students
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Empirical experiments and analysis
Graph signal smoothness analysis
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Figure: Analysis of the smoothness evolution across layers of the RKD and
GKD students
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Empirical experiments and analysis

Task specific graphs
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Figure: Analysis of the effect of task specific graphs. A graph of distinct
classes has edges only between nodes of different classes, while same class
graphs has edges only between nodes of the same class.
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Conclusion

@ Graphs can be used as a proxy to the geometry of latent
representations in deep neural networks;

@ Using graphs for knowledge distillation allows us to improve the
performance of compressed student networks;

@ We were able to analyze the intermediate representations of our
student networks.
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Conclusion

@ Graphs can be used as a proxy to the geometry of latent
representations in deep neural networks;

@ Using graphs for knowledge distillation allows us to improve the
performance of compressed student networks;

@ We were able to analyze the intermediate representations of our
student networks.

@ Small gains, could be combined with other approaches;
@ More relevant graph distances, such as spectral distance;

@ Train the network block-wise instead of end-to-end.
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Thank you for watching this presentation.

| will be happy to answer any questions you have via e-mail:
carlos.rosarkoslassance@imt-atlantique.fr.
Code available at github. com/cadurosar/graph_kd
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