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Speech Quality and Intelligibility

» Two important attributes of speech

 Important to many applications and products
» Subjective listening studies

 the most accurate way
» expensive and time consuming
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Computational Measures

* Intrusive metrics

* require access to the original speech (a limitation)

* e.g., source-to-distortion ratio (SDR) [1], hearing-aid speech quality
index (HASQI) [2], perceptual evaluation of speech quality (PESQ) [3],
extended short-time objective intelligibility (ESTOI) [4]

 Non-intrusive measures

* rely on signal properties and assumptions
*e.g., IP.563 [5], ANIQUE [6], speech to reverberation modulation
energy ratio (SRMR) [7]
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Motivation

« Data-driven approaches
* AutoMOS [8], CNN-based [9], DNN-based [10], Quality-Net
[11], NISQA [12]
« Limitations
* not correlated well with human evaluation
* not reliable in extreme test conditions
* not generalize well in unseen environment
« singular quality or intelligibility assessment
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Proposed Approach

« The attention enhanced multi-task speech assessment (AMSA)
model

* input: a clip of speech
« output: estimates of PESQ, ESTOI, HASQI, and SDR
metrics

« multi-task learning: leverages different aspects of speech
assessment
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AMSA Model

Shared layers
* 4 convolutional layers
* 1 bidirectional LSTM
(BLSTM) layer

Task-specific layers
e 1 attention layer
 classification-aided
module [13]
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Classification-aided Module

« Motivation: reduce estimation outliers
* Raw objective score: scoreg s
« Categorical label is calculated as

. . Scorek,s_Lk,thres
classy s = min(max (1, ceil ((Hk o Tr) /N, )) , Nk).

« Objective function

Etotal — Zli(:l 6k(£k,r€gr -+ )‘k * Ekz,cls)
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Experiment Setup

« Speech materials: TIMIT speech corpus

« Test conditions: simulated noisy, reverberant, and
noisy-reverberant environments

» Performance is measured with root mean square error (RMSE),

mean absolute error (MAE), and Pearson correlation coefficient
(PCC)
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Experimental Results |

PESQ ESTOI HASQI SDR
MAE RMSE | PCC A MAE RMSE| PCC MAE RMSE | PCC | MAE |RMSE  PCC
AutoMOS [8] 035 | 030 084 | 0.14 | 010 A 083 | 0.12 | 012 | 0.83 | 2.71 256 | 0.87
CNN [9] 029 | 027 086 | 007 | 006 @ 093 | 0.08 | 006 | 090 | 2.13 1.97 | 0.91
DNN [10] 0.19 | 0.18 | 0.90 0.11 008 | 086 | 0.06 | 0.07 | 0.88 1.90 1.84 | 0.91
Quality-Net [11] | 0.16 | 0.17 | 0.91 005 004 | 096 | 0.04 @ 0.04 0.91 1.52 148 | 0.92
NISQA[12] 019 | 017 A 090 | 0.06 | 006 A 094 | 0.05 | 0.04 | 091 1.24 1.27 | 0.92

AMSA 0.1 010 | 094 0.02 | 0.03 097 | 0.02 | 0.02 | 0.91 0.62 | 0.65 @ 0.95

INDIANA UNIVERSITY

LUDDY SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING




Test on Real-world Corpora

« COnversational Speech In Noisy Environments (COSINE)
corpus [14]
* multi-party conversations with background noise and
interfering speakers

« Voices Obscured in Complex Environmental Settings (VOICES)
corpus [15]
« background noise played in conjunction with foreground
speech in two furnished rooms
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Experimental Results I

PESQ ESTOI HASQI SDR
MAE RMSE | PCC A MAE RMSE| PCC MAE RMSE| PCC | MAE |RMSE  PCC
Quality-Net[11]| 0.56 | 063 | 069 | 017 | 019 | 056 & 0.10 | 0.12 | 0.71 437 | 569 | 0.67
NISQA[12] 034 | 038 077 | 014 | 018 063 | 0.06 | 008 | 0.75 | 413 | 455 | 0.7

AMSA 0.25 | 0.29 0.84 | 0.06 | 0.05 | 0.81 0.05 005 079 | 263 | 230 | 0.81
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Summary

* Propose an attention enhanced multi-task model for speech
assessment

« Apply a single model to predict a number of objective speech
quality and intelligibility metrics simultaneously

 Significantly reduce the estimation error and improves the
generalization ability in real-world acoustic environments
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Thank You

For more information please refer to our paper.

Welcome to our ASPIRE Research Group!

https://aspire.sice.indiana.edu/index.html
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