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Large-scale Datasets

Large-scale Datasets

Why Clustering?

@ Clustering has no requirement on data.

@ Collecting unlabeled data is easy.

Supervised learning Unsupervised learning
(Labeled data) (Unlabeled data)
Mislabeling

time consuming

expensive

Requirements of data for supervised
and unsupervised learning tasks

Figure 2: Supervised Learning and Unsupervised learning
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Introduction to Clustering Definition of clustering

Introduction to Clustering

Definition of clustering
Clustering is the task of grouping a set of objects in such a way that
objects in the same group are more similar (in some sense) to each other

than to those in other groups.
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Introduction to Clustering

Related work

@ The family of spectral clustering methods gains the most popularity.

@ Despite its good performance, the time and space complexity of SC
are O(n?) and O(n?), respectively.

@ Much effort has been devoted for accelerating the spectral clustering
algorithm, in recent years.

Approximate
eigenvalue
decomposition

Sampling

based methods Sparse coding
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Figure 4: Related work
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Motivation

Motivation

Key observation

@ Bipartite spectral graph partition (BSGP) is the most famous
co-clustering algorithm because of its remarkable performance.

@ The similarity between the sample and the anchor can be treated as
another description of sample.

@ Recent studies have shown that using anchor graph to construct
similar matrix can still yield promising results.
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Motivation

Motivation

According to BSGP, it is not difficult to get our model (replace the data
matrix X with the similarity matrix between samples and anchors B).

min
(n+m)xec
Yed “— v Dk

where L = D — W, D is a diagonal matrix, D;; = "4 Wij,

gj=il
0 B
v 7)
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Our Model
(& TL

min, D D )
yeatmxe F~y Dyy

min ~ Tr(YTLY(YTDY)™) (2)
Yedntm)xc

max Tr(YTWY(YTDY)™ ) (3)
Y ed(nt+m)xc

Taking YT = [ PT Q" ] into Eq. (5.3), we have
YIwy = PTBQ + Q"BTP (4)
YDy = PTDWP 4+ QTDPQ (5)
: : 1 m
where D) and D@ are both diagonal matrices, Dgi) =>", Bij,
2 n
D]('j) = i1 Bij
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Our Model

With those notations in Eq. (4) and Eq. (5), the problem in Eq. (3) can be
rewritten as follows:

max Tr(PTBQ(PTDYWP + QTDP Q)™ (6)
Pe@nXC,QEquXC

Relaxation

We relax the problem in eq. (6) into the following form by adding two
terms Tr(T~'PTPT-1QTQ) and Tr(B* B), where T represents

PTDOP + QTDAQ.
min 1B ~ P(PTDWP 1+ QTDPQ)~1QT|I2 (7)

Fast Clustering
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Our Model

Relaxation

min | B = P(PTDYP + Q" DHQ) QT

PT]?F(I)P A new
Q'D?Q variable §
min | B - PSQ" |7, (8)

st. Ped™¢ Qe dm S e R

The optimization problem in Eq. (8) can be solved using standard
techniques (alternating minimization).
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Optimization

Optimization
in ||B— PSQT|%. 9
| Q e (9)

Let J(.S) denote the objective function in Eq. (9). The derivative of J(S)
with respect to S is as follows:

aJ(S)
oS
By setting the derivative of the objective function with respect to S to
zero, we have

= —2PTBQ +2PTPSQTQ. (10)

%5 = (PTP)a(QT Q)
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Update P

in ||B—P(SQD)|%. 12
Lt | (SQ)x (12)

The solution can be determined by

0 otherwise.

. o L T 2
P, :{ 1 j=argming||B; — (SQ" )kll5, (13)

in ||B—(PS)QT|>%, 14
Qég)glxc\l (PSQ" 7 (14)

The solution is determined by

_ [ 1 j=argming|| B’ — (PS)*|3,
@i = { 0 otherwise, (15)

where B'((PS)¥) denote i-th (k-th) column of B(PS).
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Optimization

Algorithm

Algorithm 1: Algorithm to solve the problem in Eq. (8)

Data: Date matrix X € R™ ¢, the number of anchors and nearest
neighbors;
Result: Indicator matrices P and @)
Construct B according to [21] and initialize P and @ in a random way;
while not converge do
Compute S by Eq. (11) ;
Compute P by Eq. (13) ;
Compute @ by Eq. (15) ;
end

Feiping Nie, Shenfei Pei, Rong Wang, Xuelor Fast Clustering




Contributions

@ The limitation of collaborative clustering can only be applied to
specific scene can be broken by introducing anchor-based strategy.

@ The final clustering result can be obtained directly without any
post-processing

@ The time and space complexity of FCDMF are both linear with
respect to the number of samples.
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Experiments

Experiments

Comparison methods

e Traditional Spectral Clustering (SC) (NIPS-2002)

@ Scalable Spectral Clustering with cosine similarity (SSC) (ICPR-2018)

@ Improved Anchor-based Graph Clustering based on multiplicative
update optimization (AGC-I) (RS-2019)

@ Fast Spectral Clustering with anchor graph for large hyperspectral
images (FSC) (GRSL-2017)

@ Large scale Spectral Clustering via landmark-based sparse
representation (LSC) (TC-2015)

@ Fast Clustering with co-clustering via Discrete non-negative Matrix
Factorization (FCDMF) (Our method)
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Experiments

(a) SSC

(a) SSC

(a) SSC

(b) AGC-1 (c) FSC (d) LSC

Figure 1: Results on the Two-moon synthetic data.

(b) AGC-T (c) FSC (d)LSC

Figure 2: Results on the Four-corner synthetic data.

(b) AGC-1 (c) FSC (d)LSC

Figure 3: Results on the Crescent-fullmoon synthetic data.

(e) FCDMF

(e) FCDMF

(e) FCDMF
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Experiments

Table 2: The average accuracy (£ standard deviation) of several fast spectral clustering methods (The best result on each data
set is highlighted in bold).

SC SSC AGCI FSC LSC FCDMF
BinAlpha  0.449(£0.015) 0.288(£0.013) 0.416(+0.012)  0.405(£0.013) 0.407(+0.015) 0.421(£0.012)
FACE-94  0.904(£0.012) 0.719(£0.014) 0.746(+0.017)  0.749(£0.016)  0.778(+0.017)  0.914(£0.011)
FACE-95  0.532(£0.012) 0.235(£0.010)  0.396(£0.013)  0.387(4+0.012)  0.305(£0.013)  0.487(£0.010)
FEI 0.509(£0.020)  0.050(£0.007)  0.379(£0.015)  0.406(£0.017)  0.388(+0.017)  0.499(£0.014)
FERET 0.303(£0.007)  0.163(£0.008)  0.214(£0.004)  0.196(£0.009)  0.187(40.008)  0.252(=0.006)
FingerPrint  0.569(£0.028)  0.172(+0.009)  0.334(£0.022) 0.306(+0.012)  0.383(£0.022)  0.525(£0.023)
Grimace 0.929(£0.012)  0.130(£0.010)  0.905(£0.026)  0.923(£0.022)  0.820(+0.029)  0.967(+0.002)
GTDB 0.548(£0.015)  0.199(£0.011)  0.345(£0.015)  0.336(£0.015)  0.327(+£0.015)  0.472(£0.015)
IMM 0.593(+0.020)  0.109(£0.009)  0.319(+0.015)  0.451(£0.027) 0.407(+0.023)  0.547(+0.018)
JAFFE 0.825(+0.023)  0.640(£0.034)  0.888(+0.023)  0.832(£0.012)  0.705(+0.043)  0.845(+0.023)
JAFFE2 0.178(£0.000)  0.174(4£0.002)  0.174(£0.004)  0.175(£0.008)  0.187(+0.003)  0.197(£0.000)
MPEG-7  0.565(+0.011) 0.477(£0.017) 0.194(+0.010)  0.181(£0.007)  0.181(£0.008)  0.429(+0.011)
ORL 0.588(+0.023)  0.514(£0.022)  0.427(+0.017)  0.497(£0.021)  0.463(+0.023)  0.538(+0.017)
PALM 0.786(£0.016)  0.861(+0.023)  0.600(£0.014)  0.704(£0.017)  0.635(+0.020)  0.747(£0.012)
Pixraw 0P 0.910(+0.045)  0.141(£0.003)  0.729(£0.058)  0.632(£0.019)  0.659(£0.058)  0.930(+0.000)
UMIST 0.409(+0.014)  0.409(£0.021)  0.390(+0.011)  0.387(£0.011)  0.370(+0.011)  0.449(+0.011)
YALE 0.511(£0.023)  0.332(£0.017)  0.393(£0.023)  0.389(+0.022)  0.397(+0.024)  0.489(+0.021)
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Experiments

Table 4: The average normalized mutual information (£ standard deviation) of several spectral clustering methods (The best
result on each data set is highlighted in bold).

SC SSC AGCI FSC LSC FCDMF
BinAlpha  0.592(£0.007) 0.443(£0.011) 0.578(£0.006)  0.58(+0.006)  0.562(+0.007)  0.570(+0.006)
FACE-94  0.969(£0.004) 0.881(£0.005) 0.938(£0.004) 0.939(+0.005) 0.937(40.005) 0.973(£0.003)
FACE-95  0.743(+0.005) 0.492(+0.010) 0.676(+0.007)  0.679(£0.009) 0.618(£0.010)  0.706(+0.005)
FEI 0.716(£0.009)  0.103(£0.020)  0.656(+0.007)  0.677(+0.010)  0.663(£0.010)  0.696(+0.007)
FERET 0.693(£0.003)  0.501(£0.021)  0.641(£0.003)  0.585(+0.012)  0.559(£0.013)  0.669(+0.003)
FingerPrint  0.697(+0.017)  0.347(£0.016)  0.577(£0.022)  0.569(£0.013)  0.595(£0.021)  0.669(+0.014)
Grimace 0.954(+£0.004)  0.214(£0.014)  0.964(£0.008)  0.974(£0.007)  0.921(£0.009)  0.972(+0.002)
GTDB 0.712(£0.008)  0.416(+0.014)  0.626(+0.008)  0.605(+0.011)  0.59(+0.011)  0.664(+0.007)
IMM 0.767(+£0.010)  0.253(+0.028)  0.608(£0.01)  0.728(4+0.018)  0.691(£0.016)  0.744(+0.009)
JAFFE 0.861(£0.010)  0.650(£0.027)  0.877(+0.005) 0.868(4+0.009) 0.799(£0.016)  0.822(+0.018)
JAFFE2 0.013(£0.000)  0.052(£0.003)  0.015(+0.002)  0.013(+0.005)  0.035(£0.003)  0.087(+0.001)
MPEG-7  0.738(£0.004)  0.672(£0.009) 0.485(+0.018) 0.439(+0.019) 0.431(£0.019)  0.652(£0.004)
ORL 0.770(£0.011)  0.708(£0.012)  0.680(+0.008)  0.735(+0.012)  0.693(£+0.014)  0.747(£0.008)
PALM 0.924(£0.006)  0.958(+0.006)  0.844(+0.004)  0.903(+0.005)  0.871(£0.007)  0.891(=£0.004)
Pixraw I0P  0.928(4+0.017)  0.159(£0.005)  0.862(£0.026)  0.816(£0.008)  0.808(=£0.026)  0.935(+0.000)
UMIST 0.649(£0.008)  0.591(£0.013)  0.638(+0.011)  0.645(+0.012)  0.623(£0.011)  0.642(£0.011)
YALE 0.572(+£0.016)  0.406(+0.015)  0.494(40.020)  0.486(4+0.020)  0.481(£0.019)  0.533(+0.013)
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Experiments

Conclusions

Conclusions

@ Our model relaxed the original objective function to a non-negative
matrix factorization problem.

@ In our model, the final clustering result can be obtained directly
without any post-processing.

@ An efficient optimization algorithm whose time and space complexity
are both linear with respect to the number of samples

@ Substantial performance
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Thanks for Listening!
Questions?
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