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• Construction of learning model under computational and energy
constraints for practical IoT time series sensor signal analytics applications
over edge devices

• Majority of the state-of-the-art algorithms and solutions attempt to
achieve high performance objective (like test accuracy) irrespective of the
computational constraints of real-life applications

• We propose Instant Adaptive Learning that characterizes
✓ intrinsic signal processing properties of time series sensor signals using

linear adaptive filtering
✓ derivative spectrum to efficiently construct the feature space for low-cost

learning model followed by standard classification algorithms

Summary of the work
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• Dynamic time warping based distance measures with nearest neighbor classifier- DTW-

1NN [9]: Performance is poor, DTW measure is computationally expensive

• Time series substructure is learnt using symbolic Fourier approximation- BOSS [10]:

Performance is moderate, computationally expensive

• Large number of classifiers with each being hyperparameter optimized: HIVE-COTE and

COTE [11]: Performance is good, computationally hugely expensive

• Deep neural network approach like Residual Network (ResNet) [13- 14]: Performance is

good, computationally hugely expensive, GPU is required for training

• Signal Processing based Generic Feature (SPGF) with TimeNet (TN) [2, 15]: a hybrid

approach of fusing signal processing based features and pre-trained features:

Performance is good, computational requirement is moderate

Prior works
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The edge learning landscape
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• Complete on-board/ on-device processing with constrained

computational resource (Memory, Compute time, Energy)

• Diverse Scenarios – significant time spent in signal conditioning and

feature engineering

• Near-real Time Response – Instant inference

• Online near real-time Learning – Instant training

Representative challenges
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We propose a novel adaptive filter based approach: Instant Adaptive 

Learning, which enables automated and computationally lightweight 

learning (significant reduction in computational resources) while 

marginally trading off its performance

Our contribution
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• It automates the feature engineering via adaptive filter
construction followed by simple spectral features derived from the
adaptive filter output and error signals

• It makes both learning and inferencing to be extremely lightweight
from compute, memory and power perspectives

• It has provision to take metadata or expert knowledge involving
frequency response of the given system as input to impact the
learnability of the model

Our contribution
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• The main novelty of this paper is the representation capability of

adaptive filtering based learning for time series classification under

highly constrained computational budget

• The proposed Instant Adaptive Learning method is a novel signal

processing approach that attempts to characterize the training signal

distribution under the hypothesis

✓ an adaptive filter is a reliable estimator of input time series signal, when for

the desired signal, a time advanced version of the input signal is given

Novelty of this work
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• d(i) is the desired signal for constructing the RLS filter

• u(i) is the input (training) signal

✓ u(i) is a time delayed version of d(i)

• For each of the training signal, the prediction filter is

constructed – Figure A

• Subsequently, each of the training signals u(i) is

passed to its prediction filter – Figure B

✓ The output of the prediction filter:

➢ ෝ𝒖(𝒊): 𝒖(𝒊)
𝑾𝒊(𝒛)

ෝ𝒖(𝒊)

➢ 𝓔 𝒊 = 𝒖 𝒊 − ෝ𝒖(𝒊)

Methodology- Prediction Filter Construction
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• According to the Wold decomposition [17] : 𝑢 𝑖 = 𝑢𝑑 𝑖 + 𝑢𝑠 𝑖 ,
where, 𝑢𝑑 𝑖 denotes the deterministic or regular part of 𝑢(𝑖), and
𝑢𝑠 𝑖 is the stochastic or random part of 𝑢 𝑖 .

✓ In our case, ො𝑢(𝑖) represents the deterministic component
(𝑢𝑑 𝑖 ) and ℰ 𝑖 is the stochastic component (𝑢𝑠 𝑖 )

• Feature selection- we use a widely used spectrum characterization
technique called derivative spectrum - the differentiation of
spectral coefficients [18]

✓ ො𝑢, ℰ

𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒
𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚 ෠𝒰, 𝔼

✓ ො𝑢, ℰ

𝐵𝑎𝑛𝑑
𝑙𝑖𝑚𝑖𝑡𝑒𝑑 𝑏𝑦 𝑒𝑥𝑝𝑒𝑟𝑡

𝑑𝑟𝑖𝑣𝑒𝑛 𝑐𝑢𝑡−𝑜𝑓𝑓 Ω𝑙, Ω𝑢
ℱ ෠𝒰, ℱ𝔼

✓ We use standard classification algorithm like SVM with Radial Basis
Function [19] as the kernel with grid-searched hyperparameters to
generate the training model using the feature vector ℱ = ℱ ෠𝒰, ℱ𝔼 .

Methodology- Prediction Filter Construction
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• Feature selection process is unsupervised

• Each of the test signals are transformed to ෝ𝒖𝒕𝒆𝒔𝒕, 𝓔𝒕𝒆𝒔𝒕 and transformation
to෢𝓤𝒕𝒆𝒔𝒕, 𝔼𝒕𝒆𝒔𝒕 are done

• Test feature vector 𝓕𝒕𝒆𝒔𝒕 is generated from ෡𝓤𝒕𝒆𝒔𝒕, 𝔼𝒕𝒆𝒔𝒕

• The generated test features 𝓕𝒕𝒆𝒔𝒕 are fed to the constructed trained model to
infer the class of the test instances

Methodology- Testing
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• We experiment with number of time series sensor signals available from open access
database – UCR time series archive [7, 8]

• The five dataset are: FordA, FordB, wafer, Earthquake and ECGFiveDays

• These dataset represent different application scenarios for practical time series analysis

• FordA and FordB try to identify faulty automobile engines analyzing the engine noise

• Wafer dataset represents semiconductor process control measurements of normal and
abnormal fabrication

• Earthquake dataset consists of vibration signals correspond to earthquake vents

• ECGFiveDays is a set of Electrocardiogram (ECG) signals of cardiac activity problem

• The development environment is x86 architecture with 64-bit CPU and 16 cores of Intel
Xeon CPU E5-2623 v4 with 2.60GHz clock speed

• The software development is performed on Release 2017b of MATLAB

Results
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Results
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• Instant Adaptive Learning is poised to satisfy the guarantee of faster learning and

inferencing through novel adaptive filtering and derivative spectrum based

exploration of sensor signal property estimation

• This approach and the proposed algorithm are appropriate for gamut of IoT

applications for edge learning

✓ E-health, earthquake detection, real-time machine inspection at factories with

restricted access and hazardous environment

• We intend to conclude that the proposed simple, efficient learning has the

potential to be deployed in sensor nodes, edge devices, even directly on the

sensing devices that possess tiny computing power but require faster learning

capability

Conclusion
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