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ABSTRACT
Today, the security of wearable and mobile-health technolo-
gies represents one of the main challenges in the Internet
of Things (IoT) era. Adversarial manipulation of sensitive
health-related information, e.g., if such information is used
for prescribing medicine, may have irreversible consequences
involving patients’ lives. In this article, we demonstrate
the power of such adversarial attacks based on a real-world
epileptic seizure detection problem. We identify the mini-
mum perturbation required by the adversaries to declare a
seizure (ictal) sample as non-seizure (inter-ictal) in emer-
gency situations, i.e., minimal adversarial perturbation to fool
the classification algorithm.

Index Terms— Adversarial Perturbation, Mobile Health,
Privacy and Security, Epilepsy, Seizure Detection.

1. INTRODUCTION

Contrary to popular belief, the security and privacy of non-
invasive mobile-health technologies are of paramount impor-
tance, even when there is no explicit close-loop intervention
involved. Such vulnerabilities in mobile-health technolo-
gies are considered as security/privacy breaches and may
even jeopardize the safety of patients, considering the inher-
ent criticality of biomedical applications. However, due to
the limited amount of resources (processing power, commu-
nication bandwidth, memory storage, and battery lifetime)
available in such devices, security measures often serve as
secondary design goals [1–3]. In fact, there are still a large
proportion of Internet of Things (IoT) devices that do not even
adopt encrypted communication or proper authentication [4].

The current poor security measures in the Internet of
Things (IoT) devices allow a wide range of adversarial at-
tacks. Adversarial attacks have been discussed in the litera-
ture, both in terms of theory [5,6] and applications [7–9]. The
classical man-in-the-middle attack is perhaps one of the most
common security threats in these scenarios. Such attacks
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become all the more important when considering wearable
and mobile-health technologies for real-time health monitor-
ing. The information acquired by these wearable sensors and
mobile-health devices are often used for two main purposes:
(1) to monitor the progress of the health pathology for better
diagnosis, prognosis, and treatment and, (2) to inform accred-
ited relatives and emergency units in real time for rescue. As
a result, manipulation of such data/alerts, e.g., by intercept-
ing/manipulating the communication between the wearable
sensors and mobile devices or cloud engines, can have ir-
reversible consequences and may even jeopardize patient’s
life.

In this article, we consider the case of epilepsy seizure
detection problem as a real-world case study to demonstrate
the importance of such adversarial attacks. Epilepsy is a
chronic neurological disorder affecting more than 65 million
people worldwide and manifested by recurrent unprovoked
seizures [10]. The unpredictability of seizures not only de-
grades the quality of life of the patients, but it can also
be life-threatening. Modern systems monitoring electroen-
cephalography (EEG) signals are being currently developed
with the view to detect epileptic seizures in order to alert
caregivers and reduce the impact of seizures on patient’s
quality of life [11–14]. However, such seizures, if missed
to be detected, e.g., due to adversarial man-in-the-middle
attacks, may have irreversible consequences, involving pa-
tients lives. Here, we identify the minimum perturbation by
the adversaries required to declare an ictal (seizure) sample as
inter-ictal (non-seizure) in emergency situations, i.e., minimal
adversarial perturbation to fool the classification algorithm,
for the adversary to remain stealthy to ensure maximum
consequences for a prolonged period of time.

2. ADVERSARIAL SCENARIOS AND MODEL

In this article, we assume wearable sensors acquiring biosig-
nals and transmitting the raw signal to the smart phones or
cloud engines for detection of health pathologies in real time.
We assume stealthy adversaries, who would like to remain un-
detected, to maximize their impacts for an extended period.



We assume unencrypted communication between the wear-
able sensor and the mobile phone or cloud engines. Almost
two out of ten mobile applications for IoT devices use un-
encrypted communications to the cloud [4]. For communica-
tions in the local network, the number of unencrypted connec-
tions is even higher. Furthermore, we assume that the seizure
detection machine-learning model is publicly available. We
consider two man-in-the-middle attack scenarios, i.e., real-
time alert-masking adversarial attack and data-manipulation
adversarial attack, which are discussed in the following.

2.1. Real-Time Alert-Masking Adversarial Attack

Wearable and mobile-health technologies are often used for
real-time monitoring of patients to raise an alert in the case of
life-threating events. In the case of epilepsy, wearable tech-
nologies, e.g., the e-Glass sensor [11], monitor the brain ac-
tivities of the patients in real time to inform family members,
caregivers, and emergency units for rescue in case of seizures.
If the adversary is able to minimally manipulate the signal that
is sent between the wearable sensor and the mobile device for
seizure detection, then it is possible to mask such seizures.
As a result, the family members, caregivers, and emergency
units will not be notified to rescue the patients during/after the
seizures, which, in turn, may even jeopardize patient’s life.

2.2. Data-Manipulation Adversarial Attack

The information collected by mobile-health and wearable
technologies is often used by the medical experts to develop a
better understanding of such health pathologies and, in turn,
diagnosis, prognosis, and treatment. For instance, epileptolo-
gists administer drugs based on the frequency and duration of
the seizures. Without proper security measures, the adversary
is able to manipulate the biosignals acquired by wearable
sensors, while its being transmitted to smart phones or cloud
engines. The medical experts then will prescribe accord-
ing to these manipulated biosignals, which may clearly have
irreversible consequences.

3. MOTIVATIONAL EXAMPLE

Let us consider the real-time epileptic seizure detection prob-
lem using the e-Glass wearable sensor [11]. The raw EEG
signals are acquired by the e-Glass sensor and transmitted
to smart mobile phone. The seizure detection machine-
learning algorithm runs on the mobile phone to notify the
accredited relatives and emergency units for rescue in case
of seizures. A man-in-the-middle attack scenario is shown
Figure 1, where the adversary manipulates the EEG signals to
mask the seizures. As a result, the seizures may go unnoticed,
which could be life-threatening for the patients.

The original EEG signals and the corresponding adversar-
ial signals for two leads T7F7 and T8F8, which are captured
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Fig. 1. The overall scenario for the man-in-the-middle adver-
sarial attack in mobile-health applications.

by the e-Glass sensor, are shown in Figure 2. The presence of
the well-known delta–theta rhythm, i.e., rhythmic slow activ-
ity with a frequency of oscillation in 0.5–4 or 4–7 hertz, is a
clear indication of the ictal discharge and epileptic seizure in
the EEG signals [15]. Notice that there are only slight differ-
ences between the original and the corresponding adversarial
signals, e.g., the amplitude of the two large negative spikes
just after 200 in T8F8. Nevertheless, the adversary is able to
mask the seizure by minimal perturbation of the original sig-
nals. The amplification factor for each sample is also shown
in Figure 2. We make two observation: first, the majority of
the samples remain approximately the same and, second, all
samples are amplified by a factor less than 20%.

4. MINIMAL ADVERSARIAL PERTURBATION

In this section, we discuss the proposed adversarial attack,
with minimal manipulation of the signal. In Section 4.1, we
formulate the seizure detection problem as an optimization
problem. In Section 4.2, we formulate a convex optimiza-
tion problem to identify the minimum manipulation required
for misclassification of an ictal (seizure) sample as inter-ictal
(non-seizure).

4.1. Seizure Detection Classification

Let us consider the support vector machine (SVM) classifi-
cation algorithm [16]. The original formulation for the SVM
classification with soft-margin is as follows,

min
w,b,ξ

wTw + λ

n∑
i=1

|ξi|

s.t. yi · (wTxi + b) ≥ 1− ξi, i = 1, . . . , n,

(1)

where xi is sample i and yi ∈ {−1,+1} is its corresponding
label. The soft-margin slack variable for sample i denoted by
ξi. The total number of data samples is denoted by n. Finally,
the hyperplane is captured by w and b. The SVM algorithm
in its original form is unable to capture the complexity of the
seizure detection problem. Therefore, we consider a slight
transformation and use xi � xi instead of xi, as follows,



0 100 200 300 400 500 600 700 800 900 1000
original signal

-400

-200

0

200

400

T
7

F7

0 100 200 300 400 500 600 700 800 900 1000
adversarial signal

-400

-200

0

200

400

T
7

F7

0 100 200 300 400 500 600 700 800 900 1000
original signal

-500

0

500

T
8

F8

0 100 200 300 400 500 600 700 800 900 1000
adversarial signal

-500

0

500

T
8

F8

0 100 200 300 400 500 600 700 800 900 1000
adversarial perturbation

-0.2

-0.1

0

0.1

0.2

a
m

p
lifi

ca
ti

o
n
 (

%
)

0 100 200 300 400 500 600 700 800 900 1000
adversarial perturbation

-0.2

-0.1

0

0.1

0.2

a
m

p
lifi

ca
ti

o
n
 (

%
)

Fig. 2. The original signal (dark blue) and the adversarial signal (red) for two leads T7F7 and T8F8. The amplification factor
per sample is shown also in light blue. Notice that there are slight differences between the original and adversarial signals, e.g.,
the amplitude of the two large negative spikes just after 200 in T8F8.

min
w,b,ξ

wTw + λ

n∑
i=1

|ξi| (2)

s.t. yi · (wT(xi � xi) + b) ≥ 1− ξi, i = 1, . . . , n,

where operator � is the element-wise multiplication between
two vectors.

4.2. Minimal Adversarial Manipulation

Towards identifying the minimum adversarial perturbation for
misclassification of seizure samples, we first consider the ad-
ditive adversarial manipulation model, which is formulated as
follows,

min
a

‖a‖22

s.t. yi · (wT((xi + a)� (xi + a)) + b) < 0,
(3)

where a is the attack vector added with the data sample xi.
Our objective is to minimize the adversarial perturbation, cap-
tured by ‖a‖2. The constraint ensures that the data sample xi

is misclassified by adding the attack vector a. Unfortunately,
however, the above optimization problem is generally non-
convex (because of the constraint) and not straightforward to
solve efficiently.

Let us now consider the multiplicative adversarial pertur-
bation model, which is formulated as follows,

min
a

‖a− 1‖22

s.t. yi · (wT((xi � a)� (xi � a)) + b) < 0.
(4)

We reformulate the above optimization problem as follows,

min
â

‖â− 1‖2

s.t. yi · (wT ((xi � xi)� â) + b) < 0,

− 1 ≤ â− 1 ≤ 1,

(5)

which is a convex optimization problem and can be solved
exactly to find the minimum adversarial effort, i.e., ‖â− 1‖2,
required for the misclassification of sample xi. Observe that
the objective function is the classical L2 norm, which is con-
vex, and the constraints are linear with respect to variable â.
The exact attack vector is captured by â.

5. EXPERIMENTAL SETUP AND RESULTS

In this section, we evaluate the power of our proposed ad-
versarial perturbation scheme in the case of epileptic seizure
detection problem.

5.1. Epilepsy Dataset

We consider the CHB-MIT database [17] that contains EEG
signals from 23 epilepsy patients with intractable seizures.
All recordings are collected from children and young adults in
the 1.5–22 age range. In total, these recordings include 198
seizures. These EEG signals are sampled at Fs = 256 Hz,
with 16-bit resolution. We do not consider patients 6, 14, and
16 in this dataset since these patients generally suffer from
short seizures [18]. We consider only two leads in the 10–
20 EEG acquisition system [20], i.e., T7F7 and T8F8 in the
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Fig. 3. The distribution of the geometric mean, the sensitivity,
and the specificity for all subjects.

e-Glass wearable system [11] which have been shown to be
important for the detection of epileptic seizure.

5.2. Quality of Seizure Detection

In this section, we evaluate the seizure detection classification
algorithm discussed in Section 4.1. We evaluate the perfor-
mance of this algorithm based on the sensitivity (Sen), speci-
ficity (Spec), and geometric mean (Gmean) of the sensitivity
and specificity, defined as follows,

Spec =
TN

FP + TN
, (6)

Sen =
TP

TP + FN
, (7)

Gmean =
√
Spec · Sen, (8)

where FP , TN , TP and FN capture the number of false-
positive samples, true-negative samples, true-positive sam-
ples, and false-negative samples, respectively. We consider
the geometric mean, since it is the only correct average of
normalized measurements [19].

We split the entire dataset into 70% training and 30%
test. We perform a 10-fold cross-validation and summarize
the results. The geometric mean, sensitivity, and specificity
are shown in Figure 3. The median value of the geometric
mean among all subjects is 81.1%. Note that since we limit
our analysis to only two leads, i.e., T7F7 and T8F8 in the
e-Glass wearable system [11], the algorithm is not able to ac-
curately detect all seizures, as it can be seen in Figure 3.

5.3. Minimal Adversarial Manipulation

In this section, we consider the epileptic seizure samples and
evaluate the possibility of successful manipulation of these
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Fig. 4. The distribution of the adversarial success rate and
minimum required perturbation.

samples, such that seizure samples are misclassified as non-
seizure. We evaluate the performance of our adversarial ma-
nipulation scheme based on the median success rate and the
median required perturbation.

The success rate captures the number of seizure samples
that could be successfully perturbed to be misclassified as
non-seizure over the total number of original seizure sam-
ples classified correctly. The results are shown in Figure 4.
The median success rate among all subjects is 70.3%. More
importantly, for all patients, the proposed scheme is able to
successfully perturb more than 40.0% of the seizure samples
such that the classification algorithm misclassifies these sam-
ples as non-seizure.

The median required perturbation captures the effort re-
quired for misclassification of seizure samples as non-seizure.
The results are shown in Figure 4. The median value of
‖â− 1‖2 among all subjects is 1.7, where vector â is of
dimension 2000. This demonstrates the possibility of such
attacks based on minimal perturbation of epileptic brain ac-
tivities, which may have irreversible consequences if not
detected.

6. CONCLUSION

The security of Internet of things (IoT) and mobile-health
technologies represents one of today’s main challenges. Ad-
versarial manipulation of sensitive health-related information,
e.g., if used for prescribing medicine, may have irreversible
consequences, involving patients’ lives. In this article, we
demonstrated the power of such adversarial attacks based on
a real-world epileptic seizure detection problem. We formu-
lated this problem as a convex optimization problem to iden-
tify the minimum effort required by stealthy adversaries to
declare seizure samples as non-seizure, i.e., minimal adver-
sarial perturbation to fool the classification algorithm.
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