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Passive depth sensing Estimate disparity - find pixel offset  
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Light field depth estimation 

The central view and other views in light fields have the following relationship: 

𝐿 𝑢, 𝑣, 𝑠, 𝑡 = 𝐿 𝑢 + 𝑠∗ − 𝑠 𝑑 𝑢, 𝑣 , 𝑣 + 𝑡∗ − 𝑡 𝑑 𝑢, 𝑣 , 𝑠∗, 𝑡∗ , (𝑠 ∈ [1, 𝑀], 𝑡 ∈ [1, 𝑁]) 

 (𝑠∗, 𝑡∗): the coordinate of the central view     

 𝑑(𝑢, 𝑣) : the disparity of the pixel (u, v) in the central view 

 𝑀, 𝑁 : the number of views along the horizontal and vertical 

directions in light fields 

 

𝑑(𝑢, 𝑣)  



Traditional Deep learning High accuracy and efficiency  

Deep learning for light field depth estimation 

Light fields 
Convolutional neural network 

Depth map 
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Issue 1 – Photorealistic contents 

Photorealistic scene 

Real world 

Non-photorealistic scene 

Multiple everyday objects 

Important ! 

Difficult ! 



Issue 2 – depth discontinuity preserving 

Depth discontinuity Scene 

Occlusions 

Boundaries of objects 

Important ! 

Keep discontinuity 

but noisy 

Difficult ! 
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Our architecture – MANet – 2D modules  



Our architecture – MANet – 3D modules  



Our architecture - MANet  



Ours vs Epinet Architecture - context information 

Bring in large context information 
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Epinet 

Ours: +deep low-scale features 
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Trade-off 

Epinet 

Ours: Coarse to fine fusion 

Discontinuity preserving 

and less noisy  
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Ours vs Epinet Architecture - Coarse to fine fusion 
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 AVE R A G E  M S E  

Compared traditional methods:  

[4] LF (ICCV 2015)  

[6] LF_OCC (CVPR 2015) 

[11] RPRF (ICCV 2017)  

 

Compared deep-learning methods:   

[14] Epinet (CVPR 2018)   

[15] LFDE (ICASSP 2019)  

Compared dataset: CVIA-HCI and HCI datasets 

Mean Square Error (MSE)  

Accuracy - Quantitative comparison:  Depth map (DM)  Vs  Ground Truth (GT) 

=
1

ℎ1 × 𝑤1

∑
𝑖=1

ℎ1×𝑤1

(𝐺𝑇(𝑖) − 𝐷𝑀(𝑖))2 



Accuracy - Visual comparison  

Photorealistic 

Discontinuity preserving 

Center view Epinet Proposed 



Parameter and Runtime 

Parameter 

Few parameters,  

high efficiency  

Parameters Time (s) 

LF_OCC - 1.05E+04 

RPRF - 34.53 

Epinet 5.12M 1.98 

LBDE 199M 1.92 

Ours 1.58M 0.73 
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Thanks for your attention! 


