
© MERL 1

Blind Multi-Spectral Image Pan-Sharpening

  Lantao Yu, Dehong Liu, Hassan Mansour, 
Petros T. Boufounos and Yanting Ma

Rice University
Houston, Texas, USA

Mitsubishi Electric Research Laboratories (MERL)
Cambridge, Massachusetts, USA

www.merl.com



© MERL

Overview
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§ Multi-spectral imagery (MS) covers a wide range of spectrum but is with low 
spatial resolution. 

§ Panchromatic imagery(PAN) is with high spatial resolution, but is likely NOT well 
aligned with the MS. 

Background:

Problem:

Given low-resolution MS and not well aligned high-resolution PAN, how can we 
enhance the resolution of MS? 

Covering the same area, 
but not well aligned
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Limitations of Existing methods:

[1] C. Bajaj and T. Wang, “Blind hyperspectral-multispectral image fusion via graph laplacian regularization,” arXiv:1902.08224, 2019.
[2] M. Sim˜oes, J. Bioucas-Dias, L. B. Almeida, and J. Chanussot, “A convex formulation for hyperspectral image superresolution via subspacebased regularization,” TGRS 2014. 
[3]  X. Fu, Z. Lin, Y. Huang, and X. Ding, “A variational pan-sharpening with local gradient constraints,” CVPR 2019.
[4] S. Lohit, D. Liu, H. Mansour, and P. Boufounos, “Unrolled projected gradient descent for multi- spectral image fusion,” ICASSP 2019.

§ Difficult to gain enough training data, especially well-aligned data. 
§ The trained model from one sensor platform's data may not perform 
       well for another sensor platform' data.  

Learning-Based:

Model-Based:

§ The blur kernel estimation is often flawed.
§ The cross-channel relationship is not well-exploited.

Overview
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Problem Formulation 
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Mathematical formulation:

Idea:
Simultaneous registration and pan-sharpening via cross-channel prior for the 
PAN-MS relationship and total generalized variation for the blur kernel.

Toeplitz matrix of the blur kernel   

Measured low-resolution MS image with N spectral bands  

Kernel coefficients in vectorized form

Well-aligned and high-resolution MS of consistent sharpness with PAN 

Down-sampling operator

High-resolution PAN 
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  : Cross-Channel Image Prior

5

§ Cross-Channel (PAN-MS) Image Prior should be described on high-frequency domain.
§ High-frequency components across bands roughly follow a local affine function. 

the        square window of size                                 in a                image

the         element within the window, 

constant coefficients of the linear affine transform in window         within 

 the          band of the target high-resolution MS image 

Laplacian operator

scalar

Motivation:

[1] Xueyang Fu, Zihuang Lin, Yue Huang, and Xinghao Ding, “A variational pan-sharpening with local gradient constraints,”CVPR 2019.
[2] Kaiming He, Jian Sun, and Xiaoou Tang, “Guided image filtering,” PAMI 2012.
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 : Blur Kernel Prior
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§ Blur kernel should be non-negative, smooth, sparse, and normalized to unit sum. 
§ Current       -based regularizer on the gradient of kernel coefficients often force 

small graident to be 0.

Motivation:

norm

Kernel coefficients in vectorized form
Horizontal and vertical gradients
Ancillary variable for the gradients of  

First order derivative of  

Scalars

Simplex

Indicator function
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Formulation of Lagrangian
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s.t.
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Solution via ADMM 
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1. Initialize

2. Solve

3. Solve

5. Solve

6. Solve

9. Update

8. Update

10. Iterate until                                       is smaller than a threshold, or    is larger than a threshold 

7. Solve where

4. Solve
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Solution of         -subproblem 
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Soft Thresholding the         row of            and  
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Solution of    -subproblem 
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3. Project the above solution onto Simplex 

2. Solve                                                                                                    via conjugated gradients

[1] Jonathan Richard Shewchuk et al.,“An introduction to the conjugate gradient method without the agonizing pain,” 1994.

[2] Weiran Wang and Miguel A Carreira-Perpina ́n, “Projection onto the probability simplex: An efficient algorithm 
       with a simple proof, and an application,” arXiv preprint arXiv:1309.1541, 2013.

1. Reformulate the subproblem as:

: a Toeplitz matrix corresponding to the convolution

since                                                                              .                                                                         
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Solution of         -subproblem 

2. Enforce first-order necessary condition, we get: 

[1] Weihong Guo, Jing Qin, and Wotao Yin, “A new detail- preserving regularization scheme,” SIAM journal on imaging sciences, 2014.

1. Let 

:diagonal block-Toeplitz matrix 

:can be computed by FFT and inverse FFT
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Guided Imag Filtering

 [1] Kaiming He, Jian Sun, and Xiaoou Tang, “Guided image filtering,” PAMI 2012.

Solution of                    -subproblem 

guide image: 

input image:
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Solution of -subproblem

:Toeplitz matrix of Laplacian filter

where

Conjugate Gradients

[1] Jonathan Richard Shewchuk et al.,“An introduction to the conjugate gradient method without the agonizing pain,” 1994.

[2]Ningning Zhao, Qi Wei, Adrian Basarab, Nicolas Dobigeon, Denis Kouame ́, and Jean-Yves Tourneret, 
“Fast single image super-resolution using a new analytical solution for l2 − l2 problems,” IEEE Transactions on Image Processing, 2016.

or a Fast Algorithm accelerated by FFT
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Initialization of 

:number of MS bands whose electro-magnetic spectrum overlaps with PAN 

Motivation:

§ A reliable initialization of the blur kernel can avoid being trapped 
      by bad local minima.

§ Assume the stacked PAN as the perfect target MS in terms of position.
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Verification of Local Laplacian Prior
 in Guided Image Upsampling

Experimental Setting:

Local Laplacian Prior (Ours)         :  37.57 dB
Local Gradient Constraints(LGC):  37.33 dB

[1] Xueyang Fu, Zihuang Lin, Yue Huang, and Xinghao Ding, “A variational pan-sharpening with local gradient constraints,” CVPR 2019

1. The blur kernel is a    -function
2. The input MS image is from downsampling the ground-truth MS 
     image by a factor of 2

4. Metirc: Average PSNR, computed by averaging the PSNR in each channel
3. PAN image is already well-aligned with MS 

5. Dataset: Pavia University
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Verification of Second-Order 
Generalized Total Variation in Blur

Kernel Estimation 
Experimental Setting:

1. Ground Truth Blur Kernel:

2. Test Image: PAN of West of Sichuan from IKONOS

3. Metric: 

4. Solve                                                                                       for Isotropic Total Variation 

5. Solve           
 

 for Second-Order Generalized Total Variation

   : the blurred, downsampled, noisy version of PAN
 : the measurment matrix of      for generating 
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Table 1: Relative Errors corresponding to Different Regularizers and Different Noise Levels

PSNR/dB Isotropic Total Variation Second-Order
Generalized Total Variation

10 0.2904 0.1607

20 0.1818 0.0940

30 0.1008 0.0520

40 0.0502 0.0288

Comparative Study 2: 
Comparison of Results

small vertical gradient 
was forced to be 0

small vertical gradient
in ground-truth kernel 

small vertical gradient 
was preserved

TV(isotropic)+NN Regularizer Ground Truth Kernel (offset from 
the center by x=1.33, y=0.42)

TGV2+NN Regularizer (Ours)
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OUTPUT
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Fusion Results

low-res MS                high-res PAN        Pan-Sharpened MS           
(only RGB channels 

are shown)

INPUT Ground-Truth

Simulated True 
high-res MS
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Fusion Results

Exp. 1:   offset x=0.87, y=0.11
Exp. 2:   offset x=5.87, y=4.11

Comparison of estimated kernels in Exp. 2 using 
(left) BHMIFGLR, (middle) Ours, and (right) Ground-Truth

Table 2: Quantitative analysis of blind pan-sharpening results 

[1] Chandrajit Bajaj and Tianming Wang, “Blind hyperspectral- multispectral image fusion via graph laplacian regularization,” 
       arXiv preprint arXiv:1902.08224, 2019.
[2] Miguel Simo ̃es, Jose ́ Bioucas-Dias, Luis B Almeida, and Jocelyn Chanussot, “A convex formulation for hyperspectral image 
superresolution via subspace-based regularization,” TGRS 2014.
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Reconstructed RGB via BHMIFGLR Reconstructed RGB via Ours Ground-Truth

Fusion Results
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Reconstructed RGB via HySure Reconstructed RGB via Ours Ground-Truth

Fusion Results
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Fusion Results

Table 3: Average PSNR Comparsions between our approach and a deep-learning based 
approach using test Images: Moffett, Cuprite, Los Angles(L.A.) and Cambria Fire (C.F.) from
AVIRIS Data.

[1] Suhas Lohit, Dehong Liu, Hassan Mansour, and Petros T Boufounos, 
“Unrolled projected gradient descent for multi-spectral image fusion,” ICASSP 2019
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Fusion Results

Comparison of fused MS images in RGB channels using (a) 
UPGD and (b) Ours. (c) and(d) are the green channel residual 
images of (a) and (b) compared to the ground truth.

(a) (b)

(c) (d)

Our approach outperforms UPGD, especially in smooth areas.
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Take-Away Message
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§  The cross channel-relationship should focus on the 
     high-frequency components of MS and PAN image.

§     -based regularizer on the blur kernel is limited because it 
will force small gradients of the kernel coefficients be 0. We 
can use higher-order generalized total variation to improve 
the performance.


