
Generative Pre-Training for Speech with Autoregressive
Predictive Coding

Yu-An Chung James Glass

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, MA 02139, USA

ICASSP 2020



• What is self-supervised learning?
• A form of unsupervised learning where the data itself provides supervision
• In general, the goal is to predict some part of the data from any other part of it
• Can leverage large quantities of unlabeled data à cheaper data and richer 

representations

• Very successful in Vision and NLP
• Vision (pretext tasks)

• Colorization
• Image patches relationship prediction

• NLP (pre-training)
• Masked LM (BERT)
• Autoregressive LM (GPT)
• Permutation LM (XLNet)

Self-supervised learning background

Relative location prediction

[Doersch et al., 2015]

BERT

[Devlin et al., 2019]



• Future prediction
• To predict future audio features from the historical ones

• Contrastive predictive coding (CPC) [Oord et al., 2018]
• Autoregressive predictive coding (APC) [Chung et al., 2019]
• wav2vec [Schneider et al., 2019]

• Mask prediction
• To predict masked part of the input audio signals

• Mockingjay [Liu et al., 2020]
• Masked reconstruction [Wang et al., 2020]

• Multiple self-supervised tasks at the same time
• Ideally, solving each task contributes prior knowledge into the representation

• Problem-agnostic speech encoder (PASE) [Pascual et al., 2019]

Self-supervised approaches for speech (incomprehensive)



• In our previous work (Chung et al., 2019), we:
• Proposed autoregressive predictive coding (APC)
• Used RNNs as the backbone architecture
• Experimented on toy tasks such as phonetic classification

• In this work, we further explore APC by:
• Replacing RNNs with Transformers as the backbone architecture
• Experimenting on real-world applications such as ASR, speech translation, and speaker 

identification, comparing with CPC and PASE features
• Investigating the usefulness of the representations in low-resource regime, where only small 

amounts of labeled speech data are available

APC is a simple yet effective generative pre-training method for speech applications

What this work is about



Autoregressive Predictive Coding (APC)

• Given a previous context !", !$, … , !& , APC tries to predict a future audio feature !&'(
that is ( steps ahead of !&
• Uses an autoregressive model )*+ to summarize history and produce output
• , ≥ 1 encourages )*+ to infer more global underlying structures of the data rather than simply 

exploiting local smoothness of speech signals
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Types of autoregressive model !"#
• !"#

• Input: x = &', &), … , &+
• Output: y = -', -), … , -+

• .-layer Unidirectional RNN:

• .-layer Transformer decoder blocks

• Feature extraction: h0

h1 = x

h2 = RNN 2 ℎ267 , ∀9 ∈ 1, .

y = h< = >

h1 = x = >?@ +B x

h2 = TRF 2 ℎ267 , ∀9 ∈ 1, .

y = h< = >EFG

H7 HI HJ HK6@

…

…

L7 LI LJ LK6@

x

y

h7

h<

H7 HI HJ HK6@

…

…

L7 LI LJ LK6@

x

y

h7

h<

RNN

Transformer
(decoder)

• Positional encodings,
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not shown here
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as regularization in
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• Setup: pre-training + fine-tuning

• Pre-training data
• Speech portion of the LibriSpeech 360 hours subset
• 921 speakers
• 80-dimensional log Mel spectrograms as input acoustic features (i.e., !" ∈ ℝ%&)
• Use extracted features to replace log Mel as new inputs to downstream models

• Considered downstream tasks
• Speech recognition
• Speech translation
• Speaker identification (skipped in this talk, see paper!)

• Comparing methods
• Contrastive predictive coding (CPC)
• Problem-agnostic speech encoder (PASE)

Transfer learning experiments



• Considered dataset: Wall Street Journal

• Training: 90% of si284 (~ 72 hours of audio)

• Validation: 10% of si284

• Test: dev93

• APC !"#
• RNNs: 4-layer, 512-dim GRUs

• Transformers: 4-layer, 512-dim Transformer decoder blocks

• Downstream ASR model

• Seq2seq with attention [Chorowski et al., 2015]

• Beam search with beam size = 5

• No language model rescoring

Speech Recognition



Choice of !, and whether to fine-tune "#$
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Notations

• R stands for RNN
• T stands for Transformer
• Scratch: %&' randomly initialized and 

concatenate with ASR model
• Frozen: keep %&' frozen when training ASR 

model
• Finetuned: fine-tune %&' along with ASR model

Findings

• Sweet spot exists for both Frozen and Finetuned 
when varying (

• Scratch performance is poor, even worse than 
log Mel baseline

• APC outperforms log Mel most of the time
• For both R and T, Frozen outperforms Finetuned
• Will use R-APC Frozen with ( = 3 and T-APC 

Frozen with ( = 5 for the rest
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Recap: all feature extractors were pre-trained with 360 
hours of LibriSpeech data; we did not fine-tune any 
feature extractor with the ASR model

Findings

• Full set:
§ 25% and 17% relative improvement for

T-APC (13.7) and R-APC (15.2) over log Mel 
baseline (18.3), respectively

• As we decrease the amount of training data:
§ T-APC (yellow) and R-APC (gray) always 

outperform other methods
§ Gap between T-APC / R-APC and log Mel 

(blue) becomes larger
§ Using just half of si284, T-APC (16.4) already 

outperforms log Mel trained on full set (18.3)

• In the paper we also have the figure where all 
feature extractors were pre-trained on only 10 hrs 
of LibriSpeech data. TLDR: pre-training still helps 
even with just 10 hrs of pre-training data
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Findings

• T-APC (yellow) and R-APC (gray) always 
outperform other methods

• T-APC with just 2 layers (18.6) performs similar to 
log Mel with 4 layers (18.3)



• Considered dataset: LibriSpeech En-Fr

• Training set has around 100 hrs of audio

• Report BLEU scores on test set

• Downstream speech translation model

• RNN-based seq2seq with attention model [Berard et al., 2018]

• Also compare with two other baselines

• Cascaded system (ASR + MT)

• S-Transformer (end-to-end SOTA) [Di Gangi et al., 2019]

Speech Translation
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Findings

• 11% and 7% relative improvement for T-APC (14.3) 
and R-APC (13.8) over log Mel (12.9), respectively

• T-APC (14.3) outperforms end-to-end SOTA
S-Transformer with log Mel input (13.8)
• Since S-Transformer is larger than our RNN-

based seq2seq model, this result also suggests 
that using APC features can reduce 
downstream model size for speech translation

• T-APC (14.3) is close to cascaded system (14.6)



Empirically demonstrate that APC is a simple yet effective pre-training 
strategy for speech

• Can leverage large quantities of unlabeled data

• Architecture-agnostic: any autoregressive model can be used as backbone; in this 
paper we explored Transformer and RNN

• Learns general speech representations that can be transferred to different speech 
applications and outperform log Mel baseline and other self-supervised 
representations

• Allows to train downstream models more (labeled) data- and model-efficient

Conclusions



Thank you!

Questions?

Slides: http://people.csail.mit.edu/andyyuan/docs/icassp-20.generative.slides.pdf
Code: https://github.com/iamyuanchung/Autoregressive-Predictive-Coding

http://people.csail.mit.edu/andyyuan/docs/icassp-20.generative.slides.pdf
https://github.com/iamyuanchung/Autoregressive-Predictive-Coding
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