

Generative Pre-Training for Speech with Autoregressive Predictive Coding

Yu-An Chung James Glass

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Cambridge, MA 02139, USA

ICASSP 2020

Self-supervised learning background

- What is self-supervised learning?
 - A form of unsupervised learning where the data itself provides supervision
 - In general, the goal is to predict some part of the data from any other part of it
 - Can leverage large quantities of unlabeled data → cheaper data and richer representations
- Very successful in Vision and NLP
 - Vision (pretext tasks)
 - Colorization
 - Image patches relationship prediction
 - NLP (pre-training)
 - Masked LM (BERT)
 - Autoregressive LM (GPT)
 - Permutation LM (XLNet)

Relative location prediction

[Doersch et al., 2015]

[Devlin et al., 2019]

BERT

Self-supervised approaches for speech (incomprehensive)

- Future prediction
 - To predict future audio features from the historical ones
 - Contrastive predictive coding (CPC) [Oord et al., 2018]
 - Autoregressive predictive coding (APC) [Chung et al., 2019]
 - wav2vec [Schneider et al., 2019]
- Mask prediction
 - To predict masked part of the input audio signals
 - Mockingjay [Liu et al., 2020]
 - Masked reconstruction [Wang et al., 2020]
- Multiple self-supervised tasks at the same time
 - Ideally, solving each task contributes prior knowledge into the representation
 - Problem-agnostic speech encoder (PASE) [Pascual et al., 2019]

What this work is about

- In our previous work (Chung et al., 2019), we:
 - Proposed autoregressive predictive coding (APC)
 - Used RNNs as the backbone architecture
 - Experimented on toy tasks such as phonetic classification
- In this work, we further explore APC by:
 - Replacing RNNs with Transformers as the backbone architecture
 - Experimenting on real-world applications such as ASR, speech translation, and speaker identification, comparing with CPC and PASE features
 - Investigating the usefulness of the representations in low-resource regime, where only small amounts of labeled speech data are available

APC is a *simple* yet *effective* generative pre-training method for speech applications

Autoregressive Predictive Coding (APC)

- Given a previous context $(x_1, x_2, ..., x_t)$, APC tries to predict a future audio feature x_{t+n} that is n steps ahead of x_t
 - Uses an autoregressive model g_{AR} to summarize history and produce output
 - $n \ge 1$ encourages g_{AR} to infer more global underlying structures of the data rather than simply exploiting local smoothness of speech signals

Types of autoregressive model g_{AR}

- *g*_{AR}
 - Input: $\mathbf{x} = (x_1, x_2, ..., x_N)$
 - Output: $y = (y_1, y_2, ..., y_N)$
- *L*-layer Unidirectional RNN:

 $h_0 = x$ $h_l = \text{RNN}^{(l)}(h_{l-1}), \forall l \in [1, L]$ $y = h_L \cdot W$

• *L*-layer Transformer *decoder* blocks

 $\begin{aligned} \mathbf{h}_0 &= \mathbf{x} \cdot W_{in} + P(\mathbf{x}) \\ \mathbf{h}_l &= \mathrm{TRF}^{(l)}(h_{l-1}), \forall l \in [1, L] \\ \mathbf{y} &= \mathbf{h}_L \cdot W_{out} \end{aligned}$

• Feature extraction: h_L

Transfer learning experiments

- Setup: pre-training + fine-tuning
- Pre-training data
 - Speech portion of the LibriSpeech 360 hours subset
 - 921 speakers
 - 80-dimensional log Mel spectrograms as input acoustic features (i.e., $x_t \in \mathbb{R}^{80}$)
 - Use extracted features to replace log Mel as new inputs to downstream models
- Considered downstream tasks
 - Speech recognition
 - Speech translation
 - Speaker identification (skipped in this talk, see paper!)
- Comparing methods
 - Contrastive predictive coding (CPC)
 - Problem-agnostic speech encoder (PASE)

Speech Recognition

- Considered dataset: Wall Street Journal
 - Training: 90% of si284 (~ 72 hours of audio)
 - Validation: 10% of si284
 - Test: dev93
- APC g_{AR}
 - RNNs: 4-layer, 512-dim GRUs
 - Transformers: 4-layer, 512-dim Transformer decoder blocks
- Downstream ASR model
 - Seq2seq with attention [Chorowski et al., 2015]
 - Beam search with beam size = 5
 - No language model rescoring

Choice of $m{n}$, and whether to fine-tune $m{g}_{AR}$

Notations

- R stands for RNN
- T stands for Transformer
- Scratch: g_{AR} randomly initialized and concatenate with ASR model
- **Frozen**: keep g_{AR} frozen when training ASR model
- **Finetuned**: fine-tune g_{AR} along with ASR model

- Sweet spot exists for both Frozen and Finetuned when varying *n*
- Scratch performance is poor, even worse than log Mel baseline
- APC outperforms log Mel most of the time
- For both R and T, Frozen outperforms Finetuned
- Will use R-APC Frozen with n = 3 and T-APC Frozen with n = 5 for the rest

APC for reducing the amount of labeled training data

Recap: all feature extractors were pre-trained with 360 hours of LibriSpeech data; we did not fine-tune any feature extractor with the ASR model

- Full set:
 - 25% and 17% relative improvement for T-APC (13.7) and R-APC (15.2) over log Mel baseline (18.3), respectively
- As we decrease the amount of training data:
 - T-APC (yellow) and R-APC (gray) always outperform other methods
 - Gap between T-APC / R-APC and log Mel (blue) becomes larger
 - Using just half of si284, T-APC (16.4) already outperforms log Mel trained on full set (18.3)
- In the paper we also have the figure where all feature extractors were pre-trained on only 10 hrs of LibriSpeech data. TLDR: pre-training still helps even with just 10 hrs of pre-training data

APC for reducing downstream model size

→ log Mel → CPC → R-APC → T-APC → PASE

Number of encoder layers in the ASR model

Note: all models trained on full si284

- T-APC (yellow) and R-APC (gray) always outperform other methods
- T-APC with just 2 layers (18.6) performs similar to log Mel with 4 layers (18.3)

Speech Translation

- Considered dataset: LibriSpeech En-Fr
 - Training set has around 100 hrs of audio
 - Report BLEU scores on test set
- Downstream speech translation model
 - RNN-based seq2seq with attention model [Berard et al., 2018]
- Also compare with two other baselines
 - Cascaded system (ASR + MT)
 - S-Transformer (end-to-end SOTA) [Di Gangi et al., 2019]

Speech translation results

- 11% and 7% relative improvement for T-APC (14.3) and R-APC (13.8) over log Mel (12.9), respectively
- T-APC (14.3) outperforms end-to-end SOTA S-Transformer with log Mel input (13.8)
 - Since S-Transformer is larger than our RNNbased seq2seq model, this result also suggests that using APC features can reduce downstream model size for speech translation
- T-APC (14.3) is close to cascaded system (14.6)

Conclusions

Empirically demonstrate that APC is a simple yet effective pre-training strategy for speech

- Can leverage large quantities of unlabeled data
- Architecture-agnostic: any autoregressive model can be used as backbone; in this paper we explored Transformer and RNN
- Learns general speech representations that can be transferred to different speech applications and outperform log Mel baseline and other self-supervised representations
- Allows to train downstream models more (labeled) data- and model-efficient

Thank you!

Questions?

Slides: <u>http://people.csail.mit.edu/andyyuan/docs/icassp-20.generative.slides.pdf</u> Code: <u>https://github.com/iamyuanchung/Autoregressive-Predictive-Coding</u>

References

- [Doersch et al., 2015] Unsupervised visual representations learning by context prediction, ICCV
- [Devlin et al., 2019] BERT: Pre-training of deep bidirectional Transformers for language understanding, NAACL-HLT
- [Oord et al., 2018] Representation learning with contrastive predictive coding, arXiv
- [Chung et al., 2019] An unsupervised autoregressive model for speech representation learning, Interspeech
- [Schneider et al., 2019] wav2vec: Unsupervised pre-training for speech recognition, Interspeech
- [Liu et al., 2020] Mockingjay: Unsupervised speech representation learning with deep bidirectional Transformer encoders, ICASSP
- [Wang et al., 2020] Unsupervised pre-training of bidirectional speech encoders via masked reconstruction, ICASSP
- [Pascual et al., 2019] Learning problem-agnostic speech representations from multiple self-supervised tasks, Interspeech
- [Chorowski et al., 2015] Attention-based models for speech recognition, NIPS
- [Berard et al., 2018] End-to-end automatic speech translation of audiobooks, ICASSP
- [Di Gangi et al., 2019] Adapting Transformer to end-to-end spoken language translation, Interspeech