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Attention in Tacotron
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Attention in Tacotron

e Computing the attention weights and context vector.
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Attention Mechanisms for Tacotron

e Common attention mechanisms:
o Tacotron — Content-based Additive [Bahdanau, 2015]
o Tacotron 2 = Hybrid Location-Sensitive [Chorowski, 2015]
e However, these content-based attention mechanisms sometimes lead to:
o Missing or repeating words.
o Incomplete synthesis (stopping early).
o Inability to generalize to longer utterances.



Addressing Attention Problems

e Monotonic hard alignment mechanisms

o
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[Raffel, 2017], [Zhang, 2018], [He, 2019].
+ Online, linear-time when using hard alignments.

+ Improved alignment speed/stability, reduction in synthesis errors.

- Recursion required to marginalize across hard alignments.
- Reduced synthesis quality in hard alignment mode.
Still content-based.

e GMM-based mechanisms
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Based on [Graves, 2013] original sequence-to-sequence work.
Attention weights computed using a mixture of Gaussians.
Location-relative, not content-based.
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GMM-Based Mechanisms

e Attention weights computed using mixture of 1D Gaussians.
e Params computed from s, only. (Location-relative)
e Monotonic alignment via forward-only movement of means.

e Inthe paper, we test 5 GMM-based variants.
e The best performing was GMMv2b:
o  Uses softplus (instead of exp) to compute positive parameters.
o Uses biases to encourage:
m Forward movement of means.
m [nitial standard deviations of 10.
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GMM-Based Mechanisms

e Issues with GMM Attention:
o Lack of strict monotonicity.
m A wide Gaussian can look "backward" (or too far forward).
o Discretization of continuous PDF — Attention weights don't sum to 1.
m Canlead to "holes and spikes" in attention trajectory if decoder lingers on an encoder step.
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Additive Energy-Based Mechanisms

e Transform energies to weights using softmax.  a; = softmax(e;)

e Content-Based Additive [Bahdanau, 2015] e;;j = v tanh(Ws; +[Vh;|+ b)
(Tacotron 1) I—
e Hybrid Location-Sensitive [Chorowski, 2015] ei;j = v tanh(Ws; +|\Vh;|+Uf;; + b)

(Tacotron 2)

fz' :.F*ai_l

e Unlike GMM attention, these are both content-based (and not location-relative).



Dynamic Convolution Attention (DCA)

a; = softmax(e;)

e Also in Additive Energy-based Family. e;; =0T tanh([Ufi,j]+[Tgi,j]+ b)

e Static (but learned) filters. fi = F % a1

e Dynamically-computed filters. gi = G(si) xai—1, G(si) = Vgtanh(Wgs; + bg)
e Fixed prior filter. p; = log(P *x 1)

e Attributes

o Inputs: 8;, a;—1 (Location-relative, not content-based)
o Normalized weights, unlike GMM-based.



DCA Prior Filter

e Prior filter is a single fixed causal FIR filter.

e We set the taps using the PMF of beta-binomial
distribution.

o Length-11filter with a mean of 1.

e Prior filter disallows backward movement and
excessive forward movement.

e Repeated application quantifies uncertainty in initial
alignment.

ei; = v tanh(Uf; ; + Tg; ; + b) +

pbi =

log(P * ati—1)

Initial Alignment Via Repeated Application of Prior Filter
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Experiment Setup a—(k—j
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e Compare GMM-based and Additive Energy-based families.
e Fixed Tacotron model, but we vary the Attention function.
o Separately-trained WaveRNN as neural vocoder.
e Datasets
o Lessac (single-speaker audiobook, 2013 Blizzard Challenge).
m Train = 37 hours (<5 sec utts), Test = 935 utts.
o LJ Speech (single-speaker audiobook)
m Train = 23 hours (<10 sec utts), Test = 130 utts.
e Experiments
o Alignment speed and consistency during training.
o In-domain naturalness.
o  Generalization to long utterances.



Alignment Speed/Consistency

e For each mechanism, we run 10 identical trials of 10k training steps.
e Measure MCD-DTW between ground-truth test set and predicted outputs.
e When MCD-DTW drops, model has aligned with text.

Alignment Trials: Lessac < Ssec
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In-Domain Naturalness

e Crowd-sourced MOS naturalness ratings.
e Test set: Hold-out from same dataset.

Lessac LJ
Content-Based 4.07 £0.08 4.19 £ 0.06
Location-Sensitive 4.31 = 0.06 4.34 £+ 0.06
GMMv2b 432 +£0.06 4.29 £ 0.06
DCA 431 £0.06 4.33 +0.06
Ground Truth 4.64 +0.04 4.55+0.04

e Content-Based slightly worse.

o Occasional catastrophic attention failures on longer utts.
e Others produced equivalent scores.

o = No degradation from location-relative mechanisms.



Generalization to Long Utterances

e Harry Potter novels: 1034 utts, (58-1648 chars each).
e Google Cloud Speech-To-Text! used to produce output transcripts.
e Character Error Rate reported (ASR-based eval).

Length Robustness: Lessac < Ssec
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! https://cloud.google.com/speech-to-text



Generalization to Long Utterances

e Audio examples

Off camera, he frequently quipped to friends and acquaintances "D Content-Based
that SCOOP was an acronym for Sensationalism Can Ordinarily
Outgun Professionalism. There were reports of a crazy cult leader
somewhere out in the California desert who was claiming to be

: D) Location-Sensitive
Jesus Christ and had managed to dupe a few prominent
personalities, one of whom was Otis Chandler, into assisting Him
to promote His scam.
oD DCA

Many more audio examples at:

https://[google.github.io/tacotron/publications/location_relative_attention



Discussion

GMMv2b and DCA able to generalize to very long utterances.
o  While preserving naturalness on shorter utterances.
o Enables synthesis of entire paragraphs or long sentences.
e Simple to implement, with no dynamic programming to marginalize over alignments.
e Align very quickly during training.
e Compared to GMMv2b, DCA:
o  Can more easily bound its receptive field (due to the prior filter).
o Has normalized attention weights.

e For monotonic alignment tasks (e.g., TTS, ASR), location-relative attention
mechanisms work quite well and should be strongly considered.
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