
Motivation:
Deep learning is widely used in the field of image processing：
•Low illumination image enhancement

•Super resolution

•Denoising

•Hazing removal, rain removal

Then the question is coming:

•Is conventional visual processing still needed?               It’s still needed, and it’s important !

Taking exposure interpolation as an example to illustrate the importance of combining conventional and deep learning.

Exposure interpolation via hybrid learning 

• Step 1: An virtual exposed image is generated from two

large--ratio images of the same scene by conventional

method.

• Step 2: Refinement of Intermediate Image via an lightweight

residual learning (LRL) convolutional neural network.

Generation of Intermediate Image
Let 𝑥1 and 𝑥2 be two large-exposure-ratio images of the same

scene. Their exposure times are △ 𝑡1 and △ 𝑡2, respectively.

Without loss of generality, △ 𝑡1 >△ 𝑡2 . A medium exposure

image with exposure time as △ 𝑡3 is supposed to be

generated. △ 𝑡3 is between △ 𝑡1 and △ 𝑡2 , and it is defined as

△ 𝑡1△ 𝑡2.

Assume the Camera Response Function (CRF) be 𝐹(). Let the

intensity mapping functions (IMF) from 𝑥1 to y0 and from 𝑥2 to

y0 be denoted as ∧ 13 () andٿ 23 (), the functions can be

expressed as:

the intermediate image     is generated:

the weights are defined as:
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Refinement of Intermediate Image via an LRL
Let the ground truth of the medium exposure image be

denoted as . ෤𝑦 = y − y0 is unmodeled information by the

method.

෥𝑦 is sparser than the original information 𝑦, and most values

are likely to be zero or small. It can be expected that it is

easier to use a neural network to approximate ෤𝑦 than 𝑦.

Fig.1 (a) the ground truth images y; (b) the intermediate images y0; 

(c) unmodeled information (y - y0). The unmodeled information is 

usually small, many pixel values are 0’s.

The unmodeled information ෤𝑦 is learned from two images

𝑦, 𝑦0 ; by minimizing the following loss function:

𝐿 = 𝐿𝑟 + 𝑤𝐿𝑐

Reconstruction Loss 𝐿𝑟:

𝐿𝑟= 𝑦 − 𝑦0 − ሚ𝑓(𝑦0)
2
2

color loss 𝐿𝑐 :

𝐿𝑐=σ𝑝∠(𝑦 𝑝 , 𝑦0 𝑝 + ሚ𝑓(𝑦0(𝑝)))

y

Fig. 2.The proposed hybrid learning framework for exposure interpolation.
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Fig. 4. (a) Comparison of training, the red is our hybrid learning framework, the blue is existing deep learning method; Comparison of (b) SSIM 

and (c) PSNR between our hybrid learning and existing deep learning method.

Fig. 3.(a) The residual image (y-y0); (b) The residual image (y-y0- ሚ𝑓(𝑦0)); The residual image (y-y0) includes much more visible information 

than the residual image (y -y0 - ሚ𝑓(𝑦0)).
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Fig. 5.(a) The ground truth images; (b) Results of our framework; 

and (c) Results of existing deep learning method

The proposed framework is firstly compared with the conventional

method in [12] by using both structural similarity index (SSIM) and

Peak Signal to Noise Ratio (PSNR).

The proposed framework is adopted to improve multiscale exposure

fusion.


