

Indoor Altitude Estimation of Unmanned Aerial Vehicles Using a Bank of Kalman Filters

Liu Yang*, Hechuan Wang*, Yousef El-Laham*, José Fonte†, David Pérez†, Mónica F. Bugallo*

*Department of Electrical & Computer Engineering, Stony Brook University, NY,USA † Avansig S. L., A Coruña, Spain

ICASSP 2020 May 4-8

Overview

*****Motivation

*****Problem Description

***State-space** Formulation

*****Multiple Model Adaptive Estimation

- *Experiments
- *****Conclusion

Motivation

Unmanned Aerial Vehicles (UAVs)

Problem Description

The UAV architecture

Problem Description

Assumption:

- 1. Only access the data from two IR sensors
- 2. Two IR sensors are aligned in the same position.
- 3. The angle of tilt can be ignored.
- 4. The roof is level.

Goal:

Estimate the true altitude of the UAV $h_{d,t}$

by measuring the biased ranges from the upward and downward IR sensors

State-space Formulation

• The range measurements from two IR sensors:

$$y_{u,t} = R - h_{d,t} - a_{u,t} + \epsilon_{u,t},$$

$$y_{d,t} = h_{d,t} - a_{d,t} + \epsilon_{d,t},$$

• Independent measurement errors:

 $\epsilon_{u,t}, \epsilon_{d,t} \sim \mathcal{N}(0, \sigma_y^2)$

• The observation equation in matrix form:

 $\begin{aligned} \mathbf{y}_t &= \mathbf{H} \mathbf{x}_t + \boldsymbol{\epsilon}_t, \\ \text{Observation vector:} \quad \mathbf{y}_t &= [y_{u,t} - R, y_{d,t}]^\top \\ \text{State vector:} \quad \mathbf{x}_t &= [h_{d,t}, v_t, a_{u,t}, a_{d,t}]^\top \\ \text{Error vector:} \quad \boldsymbol{\epsilon}_t \sim \mathcal{N}(\mathbf{0}, \sigma_y^2 \mathbf{I}_2) \end{aligned}$

The matrix **H** is

$$\mathbf{H} = \begin{bmatrix} -1 & 0 & -1 & 0 \\ 1 & 0 & 0 & -1 \end{bmatrix}$$

State-space Formulation

• State transition equations:

$$\begin{split} h_{d,t} &= h_{d,t-1} + T_s v_{t-1} + 0.5 T_s^2 u_{v,t-1}, \\ v_t &= v_{t-1} + T_s u_{v,t-1}, \\ a_{u,t} &\sim \mathcal{N}(0, \sigma_a^2), \\ a_{d,t} &\sim \mathcal{N}(0, \sigma_a^2), \end{split}$$

Vertical velocity: v_t Sampling interval: T_s Vertical acceleration: $u_{v,t-1} \sim \mathcal{N}(0, \sigma_v^2)$

• The transition equation in matrix form:

 $\mathbf{x}_t = \mathbf{F}\mathbf{x}_{t-1} + \mathbf{u}_{t-1}$ The state error: $\mathbf{u}_{t-1} \sim \mathcal{N}(\mathbf{0}, \mathbf{Q})$

FAR BEYOND

Multiple Model Adaptive Estimation

 $\mathbf{H}_1 = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$

 $\mathbf{H}_2 = \begin{bmatrix} -1 & 0 & -1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$

 $\mathbf{H}_3 = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 1 & 0 & 0 & -1 \end{bmatrix}$

Candidate models: •

No obstacles

Obstacle above

Obstacles below

Obstacles above and below

• We use the same state variable x_t and transition equation in all candidate models.

Multiple Model Adaptive Estimation

• Scenario

Height of room R = 3mSampling interval $T_s = 0.02s$ Process noise $\sigma_v^2 = 0.001 \text{m}^2/\text{s}^4$ Observation noise $\sigma_y^2 = 0.001 \text{m}^2$ Time length T = 2000Initial states $h_{d,0} = 1.5m v_0 = 0 \text{m/s}$

• Mean squared errors (MSEs) of altitude estimation

σ_y^2	0.001			0.01		
σ_{a}^{2}	0.01	0.1	1	0.01	0.1	1
0.01	2.8e-3	4.8e-3	1.3e-2	4.6e-3	6.6e-3	1.4e-2
0.1	1.4e-3	2.4e-4	5.1e-4	1.9e-3	7.3e-4	7.7e-4
1	1.4e-3	2.3e-4	2.9e-4	2.1e-3	1.4e-3	2.9e-2

• Scenario

Height of room R = 3mSampling interval $T_s = 0.02s$ Process noise $\sigma_v^2 = 0.001 \text{m}^2/\text{s}^4$ Observation noise $\sigma_y^2 = 0.001 \text{m}^2$ Time length T = 2000Initial states $h_{d,0} = 1.5m v_0 = 0 \text{m/s}$

• Mean squared errors (MSEs) of altitude estimation

σ_y^2	0.001			0.01		
σ_{a}^{2}	0.01	0.1	1	0.01	0.1	1
0.01	2.8e-3	4.8e-3	1.3e-2	4.6e-3	6.6e-3	1.4e-2
0.1	1.4e-3	2.4e-4	5.1e-4	1.9e-3	7.3e-4	7.7e-4
1	1.4e-3	2.3e-4	2.9e-4	2.1e-3	1.4e-3	2.9e-2

• Scenario

Height of room R = 3mSampling interval $T_s = 0.02s$ Process noise $\sigma_v^2 = 0.001 \text{m}^2/\text{s}^4$ Observation noise $\sigma_y^2 = 0.001 \text{m}^2$ Time length T = 2000Initial states $h_{d,0} = 1.5m v_0 = 0 \text{m/s}$

• Mean squared errors (MSEs) of altitude estimation

σ_y^2	0.001			0.01		
σ_{a}^{2}	0.01	0.1	1	0.01	0.1	1
0.01	2.8e-3	4.8e-3	1.3e-2	4.6e-3	6.6e-3	1.4e-2
0.1	1.4e-3	2.4e-4	5.1e-4	1.9e-3	7.3e-4	7.7e-4
1	1.4e-3	2.3e-4	2.9e-4	2.1e-3	1.4e-3	2.9e-2

• Scenario

Height of room R = 3mSampling interval $T_s = 0.02s$ Process noise $\sigma_v^2 = 0.001 \text{m}^2/\text{s}^4$ Observation noise $\sigma_y^2 = 0.001 \text{m}^2$ Time length T = 2000Initial states $h_{d,0} = 1.5m v_0 = 0 \text{m/s}$

• Mean squared errors (MSEs) of altitude estimation

σ_y^2	0.001			0.01		
σ_a^2	0.01	0.1	1	0.01	0.1	1
0.01	2.8e-3	4.8e-3	1.3e-2	4.6e-3	6.6e-3	1.4e-2
0.1	1.4e-3	2.4e-4	5.1e-4	1.9e-3	7.3e-4	7.7e-4
1	1.4e-3	2.3e-4	2.9e-4	2.1e-3	1.4e-3	2.9e-2

Experiments (Real Data*)

• Scenario

Height of room R = 2.88m Process noise $\sigma_v^2 = 0.2$ m²/s⁴ Real altitude $h_{d,t} = 1.7$ m Sampling interval $T_s = 0.05$ s Observation noise $\sigma_y^2 = 0.001$ m² Uncertainty of obstacles $\sigma_a^2 = 1$ m²

• MSEs of altitude estimation in different arrangements of the obstacles

Floor Ceiling	None	Regular Parallel	Regular Inclined	Irregular
None	1.36e-4	3.57e-5	9.42e-5	1.49e-4
Regular	2.53e-4	3.61e-4	3.58e-4	4.25e-4
Irregular	4.51e-4	5.93e-4	9.50e-4	5.14e-4

Conclusion

- Addressed the problem of altitude estimation for UAVs in indoor setting only using infrared sensor data
- Tackled the problem by formulating four candidate state-space models and applying multiple model adaptive estimation with a bank of Kalman filters
- Experiments using both synthetic data and real data show the promise

Thank you very much for your attention!

Contacts

*{liu.yang.2, hechuan.wang, yousef.ellaham, monica.bugallo}@stonybrook.edu †{jilamas, dtrillo}@avansig.com

