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Motivation

*picture credit: Avansig S.L.

No GPS 
signals

Tradeoff 
between 
accuracy, 

weight and 
cost

Irregular 
obstructions

Unmanned Aerial Vehicles (UAVs)
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Problem Description
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Problem Description

The altitude estimation scenario Assumption:

1. Only access the data from two IR sensors

2. Two IR sensors are aligned in the same position.

3. The angle of tilt can be ignored.

4. The roof is level.

Goal:

Estimate the true altitude of the UAV ℎ𝑑,𝑡

by measuring the biased ranges from the upward and 
downward IR sensors
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State-space Formulation

• The range measurements from two IR sensors:

• Independent measurement errors:

• The observation equation in matrix form:

Observation vector:

State vector:

Error vector:

The matrix 𝐇 is
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State-space Formulation

• State transition equations:

Vertical velocity:

Sampling interval:

Vertical acceleration:

• The transition equation in matrix form:

The covariance matrix is

The state error:

The matrix 𝐅 is
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Multiple Model Adaptive Estimation

• Candidate models:

No obstacles

Obstacle above

Obstacles below

Obstacles above and below

• We use the same state variable 𝒙𝑡 and transition 
equation in all candidate models. 
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Multiple Model Adaptive Estimation

• MMAE for UAV altitude estimation:

Initialize 
𝒙0, 𝐏0

For 𝑡 = 1,… , 𝑇

For 𝑚 = 1, . . ,𝑀

a. Predict the prior estimate 𝒙𝑡|𝑡−1
(𝑚)

and its covariance 𝐏𝑡|𝑡−1
(𝑚)

b. Calculate the innovation 𝒛(𝑚) and its covariance 𝐒(𝑚)

c. Compute the optimal Kalman gain 𝐊(𝑚)

d. Update the posterior estimate 𝒙𝑡|𝑡
(𝑚)

and covariance 𝐏𝑡|𝑡
(𝑚)

e. Update the log-likelihood of model

𝑙𝑙𝑜𝑔
(𝑚)

= 𝛼 × 𝑙𝑙𝑜𝑔
(𝑚)

−
1

2
𝒛 𝑚 𝑇 𝐒(𝑚) −1

𝒛(𝑚) + log 𝐒 𝑚 + 2log(2𝜋)

Convert the log-likelihood to likelihood and normalize it as 𝑤(𝑚)

Weighted sum the estimate 𝒙𝑡 and covariance 𝐏𝑡
𝑥𝑡 = σ𝑚=1

𝑀 𝑤(𝑚) 𝒙𝑡|𝑡
(𝑚)

,

𝑃𝑡 =
𝑚=1

𝑀

𝑤(𝑚) 𝐏𝑡|𝑡
(𝑚)

+ (𝒙𝑡|𝑡
𝑚

− 𝑥𝑡)(𝒙𝑡|𝑡
𝑚

− 𝑥𝑡)
𝑇

Kalman 
Filter

Marginal likelihood 
𝑝 𝒚1:𝑡 = 𝑝 𝒚1:𝑡−1 𝑝(𝒚𝑡|𝒚1:𝑡−1)

= 𝑝 𝒚1:𝑡−1 𝑝 𝒚𝑡 𝒙𝑡 𝑝 𝒙𝑡 𝒚1:𝑡−1 𝑑𝒙𝑡
= 𝑝 𝒚1:𝑡−1 𝒩(𝒚𝑡|𝐇𝒙𝒕|𝑡−1, 𝐒)

Forgetting 
factor [0,1]
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Experiments
(Synthetic Data)

• Scenario

• Mean squared errors  (MSEs) of altitude estimation

in 1000 Monte Carlo simulations



‘

11

Experiments
(Synthetic Data)

• Scenario

• Mean squared errors  (MSEs) of altitude estimation

in 1000 Monte Carlo simulations



‘

12

Experiments
(Synthetic Data)

• Scenario

• Mean squared errors  (MSEs) of altitude estimation

in 1000 Monte Carlo simulations



‘

13

Experiments
(Synthetic Data)

• Scenario

• Mean squared errors  (MSEs) of altitude estimation

in 1000 Monte Carlo simulations



‘

14

Experiments
(Real Data*)

• Scenario

• MSEs of altitude estimation in different arrangements of the obstacles 

*provided by Avansig S.L.
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Conclusion

• Addressed the problem of altitude estimation for UAVs in indoor setting only 
using infrared sensor data

• Tackled the problem by formulating four candidate state-space models and 
applying multiple model adaptive estimation with a bank of Kalman filters

• Experiments using both synthetic data and real data show the promise



‘

1616ICASSP 2020 May 4-8

Thank you very much for your attention!
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