

High-accuracy Classification of Attention Deficit Hyperactivity

Disorder with L_{2,1}-norm Linear Discriminant Analysis

Yibin Tang; Xufei Li; Ying Chen; Yuan Zhong; Aimin Jiang; Xiaofeng Liu

Problems in ADHD Classification

Classification Framework with L_{2,1}-norm LDA

3

2

Experiment Results

Conclusion

Attention Deficit Hyperactivity Disorder (ADHD)

- Neurobehavioral disease in children (5%~7%)
- Symptomatological diagnosis subjective scoring with Hamilton scales
- Neurobiological diagnosis

objective observations of brain, e.g., EEG, PET, MRI biosignal, e.g., ReHo, ALFF, **Functional Connectivity (FC)**

ADHD classification

- Machine learning (ML) with three-phase approach
- Feature selection
 - SVM-RFE, LASSO, Elastic net
- Feature extraction

PCA, sparse representation, network features

> classifier design

SVM, ELM, logistic regression, decision tree

ADHD classification

- Deep learning (DL)
- remove the barriers among three phases of ML
- > different network to fit given data

FCNet, Deep fMRI, 3D-CNN, 4D-CNN

Existing ADHD classification performance

- Accuarcy
- > 52% ~ 87%
- Worse performance of DL-based methods
- cannot be used in clinical diagnosis

TABLE 3: Accuracy comparison with various state-of-the-art methods (%).

	NYU	PU	PU_1	KKI	NI
Machine learning					
Fusion fMRI (2017)	52.7	_	85.8	86.7	72.9
$L_1BioSVM$ (2018)	_	81.1	86.7	81.3	_
R-Relief (2019)	70.7	68.6	_	81.8	76.0
Deep learning					
FCNet (2017)	58.5	_	62.7	_	60.0
3D-CNN (2017)	70.5	63.0	_	72.8	_
Deep fMRI (2018)	73.1	_	62.7	_	67.9

2. Problems in ADHD classification

Data noise

- Data collection: head movement, image aligment error
- Associate disease: anxiety disorder, learning disorder

Lack of ADHD data

- Limited subjects (N<250) in ADHD database</p>
 - ML: training data cannot cover the space of test data
 - > **DL:** insufficient data to form 'big data'

3. Proposed classification Framework

3. Proposed classification Framework

- Binary hypothesis
- FCs of test data affect selected FCs of training data
- hypothesized label of test data instead of its true label
 reliable feature sequence is corresponding to true hypothesis
- obtain discriminative
 selected FCs of
 training data for true
 hypothesis

3. Proposed classification Framework

4. Experiment results

ADHD accuarcy

85

80

NYU

PU

accuracy

Site	Age	Female	Male	Control	ADHD	Total
NYU	7-18	77	145	99	123	222
KKI	8-13	37	46	61	22	83
NI	11-22	17	31	23	25	48
PU	8-17	52	142	116	78	194
PU_1*	8-17	36	48	62	24	86
*PU in	cludes th	ree subsets,	, and PU	1 is the fire	st subset o	f PU.
100 99.5 99	0.1 100			100	100 100	
95		98.3 96.4	96.5	98.4		95.8 96.0 95.7
90			91.7			

PU 1

sensitivity

KKI

specifity

NI

Left upper:DatabasesLeft bottom:Accuracy on various databasesRight:Accurarcy comparison

	NYU	PU	PU_1	KKI	NI
Machine learning					
Fusion fMRI (2017)	52.7	_	85.8	86.7	72.9
$L_1 BioSVM$ (2018)	_	81.1	86.7	81.3	_
R-Relief (2019)	70.7	68.6	_	81.8	76.0
Deep learning					
FCNet (2017)	58.5	_	62.7	_	60.0
3D-CNN (2017)	70.5	63.0	_	72.8	_
Deep fMRI (2018)	73.1	_	62.7	_	67.9
Binary hypothesis					
SP-BH (2019)	96.2	95.8	91.7	86.7	91.6
Dual-SP-BH (2020)	92.4	92.3	89.4	85.5	81.2
Our method	99.5	96.3	96.4	100	95.8

4. Experiment results

5. Conclusion

- **Classification framework with used appraoches**
 - Binary hypothesis

use FCs of test data to affect training data

• L_{2,1} LDA

robust feature learning in subspace

- Results
 - High accuarcy

97.6%, better than existing ML and DL methods

Prove the validity with ADHD symptom score

