

Robust TDOA Indoor Tracking Using Constrained Measurement Filtering and Grid-Based Filtering

- Authors: Rui Huang, Jun Tao, Le Yang, Yanbo Xue, Qisong Wu
- Presented by: Rui Huang ruih@seu.edu.cn

1. Background

- Indoor tracking
- UWB positioning
- 2. System Model
- 3. Enhanced Indoor Tracking Algorithm
- TDOA Constraint Generating
- Constrained TDOA Preprocessing
- Bound Contraction
- 4. Simulation Results
- 5. Conclusion
- 6. Future Work

Indoor Tracking

Applications:

- Indoor navigation system
- Equipment tracking
- Fire secure

.

- Technologies:
- Ultra wideband(UWB)
- Ultrasonic
- Wi-Fi
- Zigbee

.

 UWB
 Good signal penetration

 Low power consumption

 High ranging accuracy

UWB Positioning

Categories:

1.Time of arrival(TOA)

2.Angle of arrival(AOA)

3.Received signal strength(RSS)

4.Time difference of arrival(TDOA)

Why TDOA?

TOA: the target needs to be synchronized with base Stations(BSs).

AOA: requires antenna array.

RSS: sensitive to multipath inference, low accuracy for long distance positioning.

M base stations

System Model

 \mathbf{u}_{k} : target position at time k $r_{i,k}$: TDOA between BS pair i and 1 $\mathbf{r}_{k} = \begin{bmatrix} r_{2,k}, r_{3,k}, ..., r_{M,k} \end{bmatrix}^{T}$: TDOA measurement vector \mathbf{h}_{k} : true TDOA at time k

M base stations

1. TDOA Constraint Generating

 w_{k-1}^{j} : weight of the j_{th} grid at time k-1

1. TDOA Constraint Generating(Cont'd)

Expanded bounds

TDOA constraints $L_k^i \le \boldsymbol{\phi}_{i-1}^T \mathbf{h}_k \le U_k^i,$ $i = 2, 3, \dots, M$

 L_k^i, U_k^i : lower and upper bound of true TDOA between BS pair i and 1 ϕ_{i-1}^T : the $i-1_{th}$ column of $(M-1) \times (M-1)$ identity matrix

Apply sequentially *M*-1 inequality constraints

2. Constrained TDOA Preprocessing(Cont'd)

 $L_k^2 \leq \boldsymbol{\phi}_1^T \mathbf{h}_k \leq U_k^2$ $\downarrow \text{ imposing TDOA constraints}$ $q\left(\mathbf{h}_k\right) = \mathcal{N}\left(\hat{\mathbf{r}}_k, \mathbf{Q}_{\hat{\mathbf{r}}_k}\right)$

Transformation:

 $egin{aligned} \mathbf{z} &= \mathbf{V}\mathbf{W}^{-1/2}\mathbf{U}^T(\mathbf{h}_k - \hat{\mathbf{r}}_k) \ \mathbf{Q}_{\hat{\mathbf{r}}_k} &= \mathbf{U}\mathbf{W}\mathbf{U}^T \end{aligned}$

$$\mathbf{V}\mathbf{W}^{1/2}\mathbf{U}^{T}\boldsymbol{\phi}_{1} = \begin{bmatrix} (\boldsymbol{\phi}_{1}^{T}\mathbf{Q}_{\hat{\mathbf{r}}_{k}}\boldsymbol{\phi}_{1})^{1/2} & 0 & \dots & 0 \end{bmatrix}^{T}$$
$$\alpha \leq \begin{bmatrix} 1 & 0 & \dots & 0 \end{bmatrix} \mathbf{z} \leq \beta$$
$$\alpha = \frac{L_{k}^{2} - \boldsymbol{\phi}_{1}^{T}\hat{\mathbf{r}}_{k}}{(\boldsymbol{\phi}_{1}^{T}\mathbf{Q}_{\hat{\mathbf{r}}_{k}}\boldsymbol{\phi}_{1})^{1/2}} \quad \beta = \frac{U_{k}^{2} - \boldsymbol{\phi}_{1}^{T}\hat{\mathbf{r}}_{k}}{(\boldsymbol{\phi}_{1}^{T}\mathbf{Q}_{\hat{\mathbf{r}}_{k}}\boldsymbol{\phi}_{1})^{1/2}}$$

2. Constrained TDOA Preprocessing

Estimation of **Z** after applying the first inequality constraint

Estimation of \mathbf{h}_k after applying the first inequality constraint $q(\mathbf{h}_k) = \mathcal{N}(\tilde{\mathbf{r}}_k, \mathbf{Q}_{\tilde{\mathbf{r}}_k})$

Apply sequentially remaining M-2 inequality constraints

3. Bound Contraction

Weight prediction and weight update

 \mathbf{u}_k^j : position of the \dot{J}_{th} grid at time k

new bound

Scenarios in consideration

measurement noise:

zero-mean t-distributed noise with DOF $\lambda = 3$ covariance: $\frac{\lambda}{\lambda-2}\mathbf{R}$ $\mathbf{R} = \sigma^2(\mathbf{I}_4 + \mathbf{1}_4\mathbf{1}_4^T)/2$ $\sigma = 1\mathrm{m}$

Scenario1:

Better preprocessing performance, Higher positioning accuracy.

Scenario1:

1 1			,
RMSE	$\sigma = 0.5$	$\sigma = 1.0$	$\sigma = 1.5$
Chan+KF	0.9701	2.5431	4.9495
ORKF+RBGF	0.5291	0.8325	1.5312
Constrained ORKF+RBGF	0.5151	0.7970	1.4637

Comparison of positioning RMSE(m)

Scenario2:

40

Conclusion

Future Work

.

- Velocity estimation
- Better constrained measurement filtering

Thank you!

ruih@seu.edu.cn

